Skip to main content

Signaling pathways regulating ion transport in polarized cells

  • Chapter
Epithelial Transport

Abstract

A critical function of polarized tissues is to generate and maintain differences in the composition of the milieu between the two compartments separated by the tissue. This is readily apparent in compartments separated by epithelial cells, endothelial cells and bone cells (highly specialized polarized cells). To generate and maintain this difference in composition between the compartments requires a regulated vectorial transport of solutes and water across the cells of these tissues. Hence, the regulation of vectorial transport is central to the function of all polarized cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman M.J., Wickman, K.D. and Clapham, D.E. (1994) Hypotonicity activates a native chloride current in Xenopus oocytes. J. Gen. Physiol 103: 153–79.

    Article  PubMed  CAS  Google Scholar 

  • Allbritton, N.L., Oancea, E., Kuhn, M.A. and Meyer, T. (1994) Source of nuclear calcium signals. Proc. Natl. Acad. Sci. USA 91: 12458–62.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M.P., Sheppard, D.N., Berger, H.A. and Welsh, M.J. (1992) Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia. Am. J. Physiol. 263: L1-L14.

    PubMed  CAS  Google Scholar 

  • Bazzi, M.D. and Nelsestuen, G.L. (1988) Constitutive activity of membrane-inserted protein kinase C. Biochem. Biophys. Res. Comm. 152: 336–43.

    Article  PubMed  CAS  Google Scholar 

  • Bear, C.E. (1990) A non-selective cation channel in rat liver cells is activated by membrane stretch. Am. J. Physiol. 259: C421–C428.

    Google Scholar 

  • Bear, C.E. (1991) A K+-selective channel in the colonic carcinoma cell line: CaCo-2 is activated with membrane stretch. Biochim. Biophys. Acta 1069: 267–72.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M.J. (1993) Inositol trisphosphate and calcium signalling. Nature 361: 315–25.

    Article  PubMed  CAS  Google Scholar 

  • Bertorello, A.M. and Katz, A.I. (1993) Short-term regulation of renal Na-K-ATPase activity: physiological relevance and cellular mechanisms. Am. J. Physiol. 265: F743-F755.

    PubMed  CAS  Google Scholar 

  • Biagi, B.A. and Enyeart, J.J. (1990) Gadolinium blocks low- and high-threshold calcium currents in pituitary cells. Am. J. Physiol. 259: C515-C520.

    PubMed  CAS  Google Scholar 

  • Birnbaumer, L. (1993) Heterotrimeric G proteins. Molecular diversity and function correlates. J. Recent Res. 13: 19–26.

    CAS  Google Scholar 

  • Botchkin, L.M. and Matthews, G. (1993) Chloride current activated by swelling in retinal pigment epithelium cells. Am. J. Physiol. 265: C1037-C1045.

    PubMed  CAS  Google Scholar 

  • Brini, M., Pasti, L., Bastianutto, C. et al. (1994) Targeting of aequorin for calcium monitoring in intracellular compartments. J. Biolumin. Chemilumin. 9(3): 177–84.

    Article  PubMed  CAS  Google Scholar 

  • Brooker, G., Harper, J.F., Terasaki, W.L. and Moylan, R.D. (1979) Radioimmunoassay for cyclic AMP and cyclic GMP. Adv. Cyclic Nucleotide Res. 10: 1–33.

    PubMed  CAS  Google Scholar 

  • Bruce, B. and Ullrich, V. (1991) Calcium mobilization in human platelets by receptor agonists and calcium-ATPase inhibitors. FEBS Lett. 284(1): 1–4.

    Article  Google Scholar 

  • Cantiello, H.F., Stow, J.L., Prat, A.G. and Ausiello, D.A. (1991) Actin filaments regulate epithelial Na+ channel activity. Am. J. Physiol. 261:C882–C888.

    PubMed  CAS  Google Scholar 

  • Christensen, O. and Hoffmann, E.K. (1992) Cell swelling activates K+ and Cl- channels as well as non-selective, stretch-activated cation channels in Ehrlich ascites tumor cells. J. Membrane Biol. 129: 13–36.

    Article  CAS  Google Scholar 

  • Cooper, J.A. (1987) Effect of cytochalasin and phalloidin on actin. J. Cell Biol. 105: 1473–8.

    Article  PubMed  CAS  Google Scholar 

  • Cybulsky, A.V. and Cyr, M.D. (1993) Phosphatidylcholine-directed phospholipase C: activation by complement C5b-9. Am. J. Physiol. 265: F551-F560.

    PubMed  CAS  Google Scholar 

  • Diener, M., Nobles, M. and Rummel, W. (1992) Activation of basolateral Cl-channels in the rat colonic epithelium during regulatory volume decrease. Pflügers Arch. 421: 530–8.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, R, Hruska, K.A. and Misler, S. (1992) Parathyroid hormone activation of stretch-activated cation channels in osteosarcoma cells. (URM-106.01) FEBS 307: 219–23.

    Article  CAS  Google Scholar 

  • Epand, R.M. (1994) In vitro assays of protein kinase C activity. 218: 241–7.

    CAS  Google Scholar 

  • Etter, E.F., Kuhn, M.A. and Fay, F.S. (1994) Detection of changes in near-membrane Ca2+ concentration using a novel membrane-associated Ca2+ indicator. J. Biol. Chem. 269: 10141–9.

    PubMed  CAS  Google Scholar 

  • Fan, S.F., Wang, S. and Kao, C.Y. (1993) The transduction system in the isoproterenol activation of the Ca2+-activated K+ channel in guinea pig taenia coli myocytes. J. Gen. Physiol 102: 257–75.

    Article  PubMed  CAS  Google Scholar 

  • Filipovic, D. and Sackin, H. (1991) A calcium-permeable stretch-activated cation channel in renal proximal tubule. Am. J. Physiol. 260: F119-F129.

    PubMed  CAS  Google Scholar 

  • Frazier, L.W. and Yorio, T. (1992) Eicosanoids: their function in renal epithelia ion transport. Proc. Soc. Exp. Biol. Med. 201(3): 229–3.

    PubMed  CAS  Google Scholar 

  • Fricker, M.D., Gilroy, S., Read, N.D. and Trewavas, A.J. (1991) Visualization and measurement of the calcium message in guard cells. Symp. Soc. Exp. Biol. 45: 177–90.

    PubMed  CAS  Google Scholar 

  • Gilman, A.G. (1970) A protein binding assay for adenosine 3′: 5′-cyclic monophosphate. Proc. Natl. Acad. Sci. USA 67: 305–12.

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz, G., Poenie, M. and Tsien, R.Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440–50.

    PubMed  CAS  Google Scholar 

  • Hallam, T.J., Jacob, R. and Merritt, J.E. (1989) Influx of bivalent cations can be independent of receptor stimulation in human endothelial cells. Biochem. J. 259: 125–9.

    PubMed  CAS  Google Scholar 

  • Hamill, O.P., Lane, J.W. and McBride, D.W. Jr (1992) Amiloride: a molecular probe for mechanosensitive channels. Trends Pharmacol. Sci. 13: 373–6.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O.P. and McBride, D.W. Jr (1995) Mechanoreceptive membrane channels. Am. Sci. 83: 30–7.

    Google Scholar 

  • Helvoort, A.V., van’t Hof, W., Ritsema, T. et al. (1994) Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin-Darby Canine Kidney) cells. Evidence for the reverse action of a sphingomyelin synthase. J. Biol. Chem. 269: 1763–9.

    PubMed  Google Scholar 

  • Hepler, J.R. and Gilman, A.G. (1992) G proteins. TIBS 17: 383–8.

    CAS  Google Scholar 

  • Hidaka, H., Watanabe, M. and Tokumitsu, H. (1990) Search for the functional substrate proteins of protein kinases and their selective inhibitors. Adv. Second Messenger Phosphoprotein Res. 24: 485–90.

    CAS  Google Scholar 

  • Hoffmann, E.K. and Ussing, H.H. (1992) Membrane mechanisms in volume regulation in vertebrate cells and epithelia, in Membrane Transport in Biology, Vol. 5, (eds G.H. Giebisch, J.A. Schafer, H.H. Ussing and P. Kristensen), Springer-Verlag, Heidelberg, pp. 317–99.

    Google Scholar 

  • Huwiler, A., Schulze-Lohoff, E., Fabbro, D. and Pfeilschifter, J. (1993) Immunocharacterization of protein kinase C isoenzymes in rat kidney glomeruli, and cultured glomerular epithelial and mesangial cells. Exp. Nephrol. 1: 19–25.

    PubMed  CAS  Google Scholar 

  • Johnson, R.M. (1994) Membrane stress increases cation permeability in red cells. Biophys. J. 67: 1876–81.

    Article  PubMed  CAS  Google Scholar 

  • Kawahara, K. and Matsuzaki, K. (1993) A stretch-activated cation channel in the apical membrane of A6 cells. Japanese J. Physiol. 43: 817–32.

    Article  CAS  Google Scholar 

  • Kemp, B.E., Graves, D.J., Benjamini, E. and Krebs, E.G. (1977) Role of multiple basic substrate residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J. Biol. Chem. 252: 4888–94.

    PubMed  CAS  Google Scholar 

  • Kendall, J.M., Badminton, M.N., Dormer, R.L. and Campbell, A.K. (1994) Changes in free calcium in the endoplasmic reticulum of living cells detected using targeted aequorin. Anal. Biochem. 221(1): 173–81.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. (1992) A mechanosensitive K+ channel in heart cells: activation by arachi-donic acid. J. Gen. Physiol. 100: 1–20.

    Article  Google Scholar 

  • Kim, Y.-K., Dirksen, E.R. and Sanderson, M.J. (1993) Stretch-activated channels in airway epithelial cells. Am.J. Physiol 265: C1306-C1318.

    PubMed  CAS  Google Scholar 

  • Kinne, R.K., Czekay, R.P., Grunewald, J.M. et al. (1993) Hypotonicity-evoked release of organic osmolytes from distal renal cells: Systems, signals, and sided-ness. Renal Physiol. Biochem. 16: 66–78.

    PubMed  CAS  Google Scholar 

  • Lambert, D.G. (1993) Signal transduction: G proteins and second messengers. Br. J. Anaesth. 71: 86–95.

    Article  PubMed  CAS  Google Scholar 

  • Lane, J.W., McBride, D.W. Jr and Hamill, O.P. (1991) Amiloride block of the mechanosensitive cation channels in Xenopus oocytes. J. Physiol. (Lond.) 441: 347–66.

    CAS  Google Scholar 

  • Lee, M.W. and Severson, D.L. (1994) Signal transduction in vascular smooth muscle: diacylglycerol second messengers and PKC action. Am. J. Physiol. 267: C659-C678.

    PubMed  CAS  Google Scholar 

  • Lewis, S.A. and DeMoura, J.L.C. (1982) Incorporation of cytoplasmic vesicles into the apical membrane of mammalian urinary bladder epithelium. Nature 297: 685–8.

    Article  PubMed  CAS  Google Scholar 

  • Liu, R., Farach-Carson, M.C. and Karin, N.J. (1996) Effects of sphingosine derivatives on MC3T3-E1 pre-osteoblasts: psychosine elicits release of calcium from intracellular stores. Biochem. Biophys. Res. Comm. 214: 676–84.

    Article  Google Scholar 

  • Lohse, M.J., Benovic, J.L., Caron, M.G. and Lefkowitz, R.J. (1990) Multiple pathways of rapid beta 2-adrenergic receptor desensitization. Delineation with specific inhibitors. J. Biol. Chem. 265: 3202–11.

    PubMed  CAS  Google Scholar 

  • Marrinac, B., Buechner, M., Delcour, A.H. et al. (1987) Pressure-sensitive ion channels in Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 2297–301.

    Article  Google Scholar 

  • Matthews, J.B., Awtrey, C.S., Hecht, G. et al. (1993) Phorbol ester sequentially downregulates cAMP-regulated basolateral and apical Cl transport pathways in T84 cells. Am. J. Physiol. 265: C1109-C1117.

    PubMed  CAS  Google Scholar 

  • McBride, D.W. Jr and Hamill, O.P. (1992) Pressure-clamp: a method for rapid step perturbation of mechanosensitive channels. Pfl_gers Arch. 421: 606–12.

    Article  Google Scholar 

  • McCarty, N.A. and O’Neil, R.G. (1991) Calcium-dependent control of volume regulation in renal proximal tubule cells: I. Swelling-activated Ca2+ entry and release. J. Membrane Biol. 123: 149–60.

    Article  CAS  Google Scholar 

  • McCarty, N.A. and O’Neil, R.G. (1992) Calcium signaling in cell volume regulation. Physiol. Rev. 72: 1037–61.

    PubMed  CAS  Google Scholar 

  • McIlroy, B.K., Walters, J.D. and Johnson, J.D. (1991) A continuous fluorescence assay for protein kinase C. Anal. Biochem. 195: 148–52.

    Article  PubMed  CAS  Google Scholar 

  • McNeil, P.L. and Taylor, D.L. (1985) Aequorin entrapment in mammalian cells. Cell Calcium 6: 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Mills, J.W. and Mandel, L.J. (1994) Cytoskeletal regulation of membrane transport events. FASEB J. 8: 1161–5.

    PubMed  CAS  Google Scholar 

  • Mills, J.W., Schwiebert, E.M. and Stanton, B.A. (1994) Evidence for the role of actin filaments in regulating cell swelling. J. Exp. Zoo. 268: 111–20.

    Article  CAS  Google Scholar 

  • Moody, W.J. and Bosma, M.M. (1989) A non-selective cation channel activated by membrane deformation in oocytes of the ascidian Boltenia villosa. J. Membrane Biol 107: 179–88.

    Article  CAS  Google Scholar 

  • Morris, C.E. (1990) Mechanosensitive ion channels. J. Membrane Biol. 113: 93–107.

    Article  CAS  Google Scholar 

  • Morris, C.E. and Horn, R. (1991) Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single channel studies. Science 251: 1246–9.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y. (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607–14.

    Article  PubMed  CAS  Google Scholar 

  • Ogreid, D., Dostmann, W., Genieser, H.G. et al. (1994) (Rp)- and (Sp)-8-piperidino-adenosine 3′,5′-(cyclic)thiophosphates discriminate completely between site A and B of the regulatory subunits of cAMP-dependent protein kinase type I and II. Eur. J. Biochem. 221: 1089–94.

    Article  PubMed  CAS  Google Scholar 

  • Pagano, R.E. and Sleight, R.G. (1985) Defining lipid transport pathways in animal cells. Science 229: 1051–7.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, R.B. and Kemp, B.E. (1991) Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Meth. Enzymol. 200: 62–81.

    Article  PubMed  CAS  Google Scholar 

  • Preiss, J., Loomis, CR., Bishop, W.R. et al. (1986) Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. J. Biol. Chem. 261: 8597–600.

    PubMed  CAS  Google Scholar 

  • Putney, J.W. Jr (1993) Excitement about calcium signaling in inexcitable cells. Science 262: 676–678.

    Article  PubMed  Google Scholar 

  • Reuss, L., Segal, Y. and Altenberg, G. (1991) Regulation of ion transport across gallbladder epithelium. Annu. Rev. Physiol. 53: 361–73.

    Article  PubMed  CAS  Google Scholar 

  • Roe, M.W., Lemasters, J.J. and Herman, B. (1990) Assessment of fura-2 for measurement of cytoplasmic free calcium. Cell Calcium 11: 63–73.

    Article  PubMed  CAS  Google Scholar 

  • Roman, R.J. and Harder, D.R. (1993) Cellular and ionic signal transduction mechanisms for the mechanical activation of renal arterial vascular smooth muscle. J. Am. Soc. Nephrol. 4: 986–96.

    PubMed  CAS  Google Scholar 

  • Rubin, C.S., Erlichman, J. and Rosen, O.M. (1974) Cyclic AMP-dependent protein kinase from bovine heart muscle. Meth. Enzymol. 38: 308–15.

    Article  PubMed  CAS  Google Scholar 

  • Ruknudin, A., Song, M.I. and Sachs, F. (1991) The ultrastructure of patch-clamped membranes: a study using high voltage electron microscopy. J. Cell Biol. 112(l): 125–34.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, F. (1988) Mechanical transduction in biological systems. Crit. Rev. Biomed. Eng. 16: 141–69.

    PubMed  CAS  Google Scholar 

  • Sackin, H. (1987) Stretch-activated potassium channels in renal proximal tubule. Am. J. Physiol. 253: F1253-F1262.

    PubMed  CAS  Google Scholar 

  • Saxon, M.L., Zhao, X. and Black, J.D. (1994) Activation of protein kinase C isozymes is associated with post-mitotic events in intestinal epithelial cells in situ. J. Cell Biol. 126: 747–73.

    Article  PubMed  CAS  Google Scholar 

  • Schliwa, M. (1982) Action of cytochalasin D on cytoskeletal networks. J. Cell Biol. 92: 79–91.

    Article  PubMed  CAS  Google Scholar 

  • Schwiebert, E.M., Mills, J.W. and Stanton, B.A. (1994) Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J. Biol. Chem. 269: 7081–9.

    PubMed  CAS  Google Scholar 

  • Scott, J.D., Glaccum, M.B., Fischer, E.H. and Krebs, E.G. (1986) Primary-structure requirements for inhibition by the heat-stable inhibitor of the cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 83: 1613–16.

    Article  PubMed  CAS  Google Scholar 

  • Sesko, A., Cabot, M. and Mossman, B. (1990) Hydrolysis of inositol phospholipids precedes cellular proliferation in asbestos-stimulated tracheobronchial epithelial cells. Proc. Natl. Acad. Sci. USA 87: 7385–9.

    Article  PubMed  CAS  Google Scholar 

  • Sokabe, M. and Sachs, F. (1990) The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy. J. Cell Biol 111: 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M., Miyazaki, K., Ikeda, M. et al. (1993) F-actin network may regulate a Cl- channel in renal proximal tubule cells. J. Membrane Biol. 134: 31–9.

    Article  CAS  Google Scholar 

  • Tamaoki, T. (1991) Use and specificity of staurosporine, UCN-01, and calphostin C as protein kinase inhibitors. Meth. Enzymol. 201: 340–7.

    Article  PubMed  CAS  Google Scholar 

  • Ubl, J., Murer, H. and Kolb, H.-A. (1988) Ion channels activated by osmotic and mechanical stress in membranes of opossum kidney cells. J. Membrane Biol. 104: 223–32.

    Article  CAS  Google Scholar 

  • Wang, N., Butler J.P. and Ingber, D.E. (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260: 1124–7.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W.-H., Cassola, A. and Giebisch, G. (1994) Involvement of actin cytoskeleton in modulation of apical K+ channel activity in rat collecting duct. Am. J. Physiol. 267: F592-F598.

    PubMed  CAS  Google Scholar 

  • Weiss, M.J. and Lang, F. (1992) Ion channels activated by swelling of Madin-Darby Canine Kidney (MDCK) cells. J. Membrane Biol. 126: 109–14.

    Article  CAS  Google Scholar 

  • Welsh, M.J., Anderson, M.P., Rich, D.P. et al. (1992) Cystic fibrosis transmembrane conductance regulator: a chloride channel with novel regulation. Neuron 8: 821–9.

    Article  PubMed  CAS  Google Scholar 

  • Whatley, R.E., Zimmerman, G.A., Mclntyre, T.M. and Prescott, S.M. (1990) Lipid metabolism and signal transduction in endothelial cells. Prog. Lipid Res. 29(1): 45–63.

    Article  PubMed  CAS  Google Scholar 

  • Widdicombe, J.H., Kondo, M. and Mochizuki, H. (1991) Regulation of airway mucosal ion transport. Int. Arch. Allergy Appl. Immunol. 94: 56–61.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.C. and Sacks, F. (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243: 1068–71.

    Article  PubMed  CAS  Google Scholar 

  • Yantorno, R.E., Carre, D.A., Coca-Prados, M. et al (1992) Whole cell patch clamping of ciliary epithelial cells during anisosmotic swelling. Am. J. Physiol. 262: C501-G509.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Karin, N.J., Zhang, M.I.N., Decker, E.R., O’Neil, R. (1996). Signaling pathways regulating ion transport in polarized cells. In: Wills, N.K., Reuss, L., Lewis, S.A. (eds) Epithelial Transport. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1495-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1495-7_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7168-0

  • Online ISBN: 978-94-009-1495-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics