Skip to main content

Methods and experimental analysis of single ion channels

  • Chapter
Epithelial Transport
  • 118 Accesses

Abstract

The patch clamp technique introducted by Neher and colleagues (Neher, Sakmann and Steinbach, 1978; Hamill et al., 1981) has been used to study ion channels at both the single-channel and the whole-cell level in animal, plant and bacterial cells. The successful application of the technique is critically dependent on the ability to form a high resistance (10–100 GΩ) seal between the patch pipette and the plasma membrane of the cell under study. The formation of a giga-seal effectively isolates the membrane patch both electrically and chemically. Electrical isolation of the patch allows the current flowing through a single channel to be resolved and the patch to be voltage clamped by simply applying a voltage to the pipette. Chemical isolation of a patch of membrane from a cell allows the normal ionic environment of the patch to be manipulated. The giga-seal is also mechanically very stable and enables the patch to be either excised from the cell or ruptured, thus creating a number of different and useful recording configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auerbach, A. and Sachs, F. (1984) Patch clamp studies of single ionic channels. Ann. Rev. Bioeng. 13:269–302.

    Article  CAS  Google Scholar 

  • Colquhoun, D. and Hawkes, A.G. (1983) The principles of the stochastic interpretation of ion-channel mechanisms, in Single-Channel Recording, (eds B. Sakmann and E. Neher), Plenum Press, New York, pp. 135–76.

    Google Scholar 

  • Colquhoun, D. and Sigworth, F.J. (1983) Fitting and statistical analysis of single channel records, in Single-Channel Recording, (eds B. Sakmann and E. Neher), Plenum Press, New York, pp. 191–263.

    Google Scholar 

  • Copello, J., Simon, B., Segal,Y. et al .(1991) Ba2+ release from soda glass modifies single maxi K+ channel activity in patch clamp experiments. Biophys. J. 60:931–41.

    Article  PubMed  CAS  Google Scholar 

  • Copello, J., Wehner, F. and Reuss, L. (1993) Artifactual expression of a maxi-K+ channels in basolateral membrane of gallbladder epithelia cells. Am. J. Physiol. 264:C1128-C1136.

    PubMed  CAS  Google Scholar 

  • Corey, D.P. and Stevens, C.F. (1983) Science and technology of patch recording electrodes, in Single-Channel Recording, (eds B. Sakmann and E. Nener), Plenum Press, New York, pp. 53–68.

    Google Scholar 

  • Cota, G. and Armstrong, CM. (1987) Potassium channel ‘inactivation’ induced by soft glass patch pipettes. Biophys. J. 53:107–9.

    Article  Google Scholar 

  • Dionne, V.E. (1981) The kinetics of slow muscle acetylcholine-operated channels in the garter snake. J. Physiol. 310:159–90.

    PubMed  CAS  Google Scholar 

  • Donaldson, P.J. and Lewis, S.A. (1990) The effect of serosal hypertonic challenge on basolateral membrane potential in the rabbit urinary bladder. Am. J. Physiol. 258: C248-C257.

    PubMed  CAS  Google Scholar 

  • Dragsten, P.R., Blumenthal, R. and Handler, J.S. (1981) Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane. Nature 294:718–22.

    Article  PubMed  CAS  Google Scholar 

  • Dunne, M.J. and Peterson, O.H. (1986) GTP and GDP activation of K+ that can be inhibited by ATP. Pflügers Arch. 407: 564–5.

    Article  PubMed  CAS  Google Scholar 

  • Fenwick, E.M., Marty, A. and Neher, E. (1982) A patch-clamp study of bovine chromaffin cells and their sensitivity to acetylcholine. J. Physiol (Lond.) 331:577–97.

    CAS  Google Scholar 

  • Gogelein, H. and Greger, R. (1984) Single channel recordings from basolateral and apical membrane of renal proximal tubules. Pflüger Arch. 408:282–90.

    Google Scholar 

  • Goldman, D.E. (1943) Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27:37–60.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O.P. (1983) Potassium and chloride channels in red blood cells, in Single-channel Recording (eds B. Sakmann and E. Neher), Plenum Press, New York, pp. 451–71.

    Google Scholar 

  • Hamill, O.P., Marty, A., Neher, E. et al .(1981) Improved patch clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391:85–100.

    Article  PubMed  CAS  Google Scholar 

  • Horn, R. and Marty, A. (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92:145–59.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, M., Lopes, A.G., Boulpaep, E.L. and Giebisch, G.H. (1984) Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules. PNAS 81:4237–9.

    Article  PubMed  CAS  Google Scholar 

  • Kakei, M. and Ashcroft, F.M. (1987) A microflow superfusion system for use with excised membrane patches. Pflügers Arch. 409:337–41.

    PubMed  CAS  Google Scholar 

  • Labarca, P., Coronado, R. and Miller, C. (1980) Thermodynamic and kinetic studies of the gating behavior of a K+-selective channel from the sacroplasmic reticulum membrane. J. Gen. Physiol. 76:397–424.

    Article  CAS  Google Scholar 

  • Lapointe, J.-Y. and Szabo, G. (1987) A novel holder for allowing internal perfusion of patch pipettes. Pflügers Arch. 410:212–16.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S.A. and Alles, W.P. (1986) Urinary kallikrein: a physiological regulator of epithelial Na+ transport. PNAS 83:5345–8.

    Article  PubMed  CAS  Google Scholar 

  • Lindau, M. and Fernandez, J.M. (1986) IgE-mediated degranulation of mast cells does not require opening of ion channels. Nature 319:150–3.

    Article  PubMed  CAS  Google Scholar 

  • Lindemann, B. and Van Driessche, W. (1977) Sodium-specific membrane channels of frog skin are pores: current fluctuations reveal high turnover. Science 221:292–4.

    Article  Google Scholar 

  • Lopes, A.G. and Guggino, W.B. (1987) Volume regulation in the early proximal tubule of the Necturus kidney. J. Memb. Biol. 97:117–25.

    Article  CAS  Google Scholar 

  • Neher, E., Sakmann, B. and Steinbach, J.H. (1978) The extracellular patch clamp: a method for resolving currents through individual open channels in biological membranes. Pflügers Arch. 375:219–26.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, L.G. and Frindt, G. (1986) Amiloride-sensitive Na+ channels from the apical membrane of the rat cortical collecting tubule. PNAS 83:2767–70.

    Article  PubMed  CAS  Google Scholar 

  • Rae, J.L. (1985) The application of patch clamp methods to ocular epithelia. Curr. Eye Res. 4:409–20.

    Article  PubMed  CAS  Google Scholar 

  • Rae, J.L. and Levis, R.A. (1984) Patch clamp recordings from the epithelium of the lens obtained using glasses selected for low noise and improved sealing properties. Biophys. J. 45:144–6.

    Article  PubMed  CAS  Google Scholar 

  • Richards, N.W. and Dawson, D.C. (1986) Single potassium channels blocked by lidocaine and quinidine in isolated turtle colon epithelial cells. Am. J. Physiol. 251:C85-C89.

    PubMed  CAS  Google Scholar 

  • Sackin, H. and Palmer, L.G. (1987) Basolateral potassium channels in renal proximal tubules. Am. J. Physiol. 253:F476-F487.

    PubMed  CAS  Google Scholar 

  • Sakmann, B. and Neher, E. (1983) Geometric parameters of pipettes and membrane patches, in Single-Channel Recording, (eds B. Sakmann and E. Neher), Plenum Press, New York, pp. 37–52.

    Google Scholar 

  • Sakmann, B. and Neher, E. (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Ann. Rev. Physiol. 46:455–72.

    Article  CAS  Google Scholar 

  • Sigworth, F.J. and Neher, E. (1980) Single Na+ channel currents observed in cultured rat muscle cells. Nature 287:447–9.

    Article  PubMed  CAS  Google Scholar 

  • Trautmann, A. and Siegelbaum, S.A. (1983) The influence of membrane patch isolation on single acetylcholine-channel current in rat myotubules, in Single-channel Recording (eds B. Sakmann and E. Neher), Plenum Press, New York, pp. 473–80.

    Google Scholar 

  • Yellen, G. (1982) Single Ca2+ activated non-selective cation channels in neuroblastoma. Nature 296:357–9.

    Article  PubMed  CAS  Google Scholar 

  • Yellen, G. (1984) Ionic permeation and blockade in Ca2+-activated K+ channels of Bovine chromaffin cells. J. Gen. Physiol. 84:157–86.

    Article  PubMed  CAS  Google Scholar 

  • Ziomek, C.A., Schulman, S. and Edidin, M. (1980). Redistribution of membrane proteins in isolated mouse intestinal epithelial cells. J. Cell Biol. 86:849–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Lewis, S.A. (1996). Methods and experimental analysis of single ion channels. In: Wills, N.K., Reuss, L., Lewis, S.A. (eds) Epithelial Transport. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1495-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1495-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7168-0

  • Online ISBN: 978-94-009-1495-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics