Skip to main content

Structure and properties of hydrocarbon-based ionomers

  • Chapter
Ionomers

Abstract

Previous chapters have illustrated that interactions between ionic groups located within, or pendant to, polymer chains strongly influence the morphological structure and properties for both polymer melts and solutions. These interactions are also observed to affect the bulk viscoelastic and mechanical properties of polymeric materials considered to be in the ‘solid’ state. Such materials include those that are below the melting temperature (for semicrystalline polymers) or glass transition temperature (for amorphous polymers) as well as materials above the glass transition temperature that are sufficiently ionically crosslinked to be considered elastomeric in terms of their mechanical response. The time-dependent properties, such as stress—relaxation, creep, and dynamic mechanical properties, are particularly sensitive to the strength of ionic associations which, in turn, are dependent upon the ionic species (e.g. sulfonate or carboxylate), the neutralizing cation, competing interactions with other portions of the polymer chain, etc. In addition to the effects of ionic interaction, phase behavior may also play a role in influencing the mechanical response. Phases in the system of interest may be in the glassy state, the glass transition region, or the rubbery region. If crystallinity is present, viscoelastic and mechanical properties will also be affected by the level of crystallinity and the crystalline morphology. For example, the crystalline phase may be either continuous or distributed so that the crystallites act somewhat as rigid filler particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, P.K., Makowski, H.S., and Lundberg, R.D. (1980). Viscoelastic behavior of sulfonated polymers: sulfonated ethylene-propylene terpolymer. Macromolecules 13: 1679–87.

    Article  CAS  Google Scholar 

  • Aklonis, J J. and MacKnight, W.J. (1983). Introduction to Polymer Viscoelasticity. New York: John Wiley.

    Google Scholar 

  • Al-Shah, H.A., Frisch, K.C., Xiao, H.X., and McLean, J.A. (1987). Polyurethane anionomers. I. Structure and properties of polyurethane anionomers. J. Polm. Sci.: Part A: Polym. Chem. 25: 2127–37.

    Article  Google Scholar 

  • Bagrodia, S., Mohajer, Y., and Wilkes, G.L. (1982). New polyisobutylene-based model ionomers. 4. Strain induced crystallization of low molecular weight model ionomers. Polym. Bull. 8: 281–86.

    Article  CAS  Google Scholar 

  • Bagrodia, S., Mohajer, Y., Wilkes, G.L., Storey R.F., and Kennedy, J.P. (1983). New polyisobutylene-based model ionomers. 5. The effect of molecular weight on the mechanical properties of triarm-star polyisobutylene-based model ionomers. Polym. Bull. 9: 174–80.

    Article  CAS  Google Scholar 

  • Bagrodia, S., Wilkes, G.L., and Kennedy, J.P. (1985). New polyisobutylene-based model elastomeric ionomers. VII. Thermal-mechanical analysis. J. Appl. Polym. Sci. 30: 2179–93.

    Article  CAS  Google Scholar 

  • Bagrodia, S., Wilkes, G.L., and Kennedy, J.P. (1986). New polyisobutylene-based model elastomeric ionomers. Rheological behavior. Polym. Eng. Sci. 26: 662–72.

    Article  CAS  Google Scholar 

  • Bagrodia, S., Tant, M.R., Wilkes, G.L., and Kennedy, J.P. (1987). Sulfonated polyisobutylene telechelic ionomers: 12. Solid state mechanical properties. Polymer 28: 2207–26.

    Article  CAS  Google Scholar 

  • Bazuin, C.G. and Eisenberg, A. (1986) Dynamic mechanical properties of plasticized polystyrene-based ionomers. I. Glassy to rubbery zones. J. Polym. Sci.: Part B: Polym. Phys. 24: 1137–53.

    Article  CAS  Google Scholar 

  • Broek, D. (1987). Elementary Engineering Fracture Mechanics. Boston: Martinus Nijhoff.

    Google Scholar 

  • Broek, D. (1989). The Pratical Use of Fracture Mechanics. Boston: Kluwer.

    Google Scholar 

  • Chen, S.-D. and Chan, W. (1990a). Polyurethane cationomers. I. Structure-property relationships. J. Polym. Sci.: Part B: Phys. 28: 1499–514.

    Article  CAS  Google Scholar 

  • Chen, S.-D. and Chan, W. (1990b). Polyurethane cationomers. II. Phase inversion and its effect on physical properties. J. Polym. Sci.: Part B: Phys. 28: 1515–32.

    Article  CAS  Google Scholar 

  • Clas, S. and Eisenberg, A. (1986). Styrene-alkoxide ionomers. III. Comparison with other styrene ionomers. J. Polym. Sci.: Part B: Phys. 24: 2767–77.

    Article  CAS  Google Scholar 

  • Dekoninck, J.M., Legras, R., and Mercier, J.P. (1989). Nucleation of poly(ethylene terephthalate) by sodium compounds. Polymer 30: 910–13.

    Article  CAS  Google Scholar 

  • Deng, Z.D. and Mauritz, K.A. (1992a) Dielectric relaxation studies of acid-containing shortside-chain perfluorosulfonate ionomer membranes. Macromolecules 25: 2369–80.

    Article  Google Scholar 

  • Deng, Z.D. and Mauritz, K.A. (1992b) Dielectric relaxation studies of water-containing short-side-chain perfluorosulfonate acid membranes. Macromolecules 25: 2739–45.

    Article  Google Scholar 

  • Drzewinski, M. and MacKnight, W.J. (1985). Structure and properties of sulfonated polysulfone ionomers. J. Appl. Polym. Sci. 30: 4753–70.

    Article  CAS  Google Scholar 

  • Duvdevani, I., Lundberg, R.D., Wood-Cardovae, C., and Wilkes G.L. (1986). Modification of ionic assosiations by crystalline polar additives. In Coulombic Interactions in Macromolecular Systems. A. Eisenberg and F.E. Bailey, eds. Washington DC: American Chemical Society.

    Google Scholar 

  • Eisenberg, A. and Navratil, M. (1973). Ion clustering and viscoelastic relaxation in styrene-based ionomers. II. Effect of ion concentration. Macromolecules 6: 604–12.

    Article  CAS  Google Scholar 

  • Eisenberg, A. and Navratil, M. (1974). Ion clustering and viscoelastic relaxation in styrene-based ionomers. IV. X-ray and dynamic mechanical studies. Macromolecules 7: 90–4.

    Article  CAS  Google Scholar 

  • Eisenberg, A., Matsuura, H., and Yokoyama, T. (1971). Glass transition in ionic polymers: the acrylates. J. Polym. Sci. Part A-2 9: 2131–5.

    Article  CAS  Google Scholar 

  • Eisenberg, A., Matsuura, H., and Tsutsui, T. (1980). Viscoelastic properties of ethyl acrylate ionomers. I. Stress relaxation. J. Polym. Sci. Polym. Phys. Ed. 18: 479–92.

    Article  CAS  Google Scholar 

  • Feng, D., Wilkes, G.L., Leir, C.M., and Stark, J.E. (1989a) Morphological investigation of polytetramethyleneoxide-dibromoxylene segmented ionic polymers by transmission electron microscopy and small angle x-ray scattering. J. Macromol. Sci.: Chem. A26: 1151–181.

    Article  CAS  Google Scholar 

  • Feng, D., Venkateshwaran, L.N., Wilkes, G.L., Leir, C.M., and Stark, J.E. (1989b). Structure-property behavior of elastomeric segmented PTMO-ionene polymers. II. J. Appl. Polym. Sci. 38: 1549–65.

    Article  CAS  Google Scholar 

  • Ferry, J.D. (1980). Viscoelastic Properties of Polymers. New York: John Wiley.

    Google Scholar 

  • Fitzgerald, J.J., Kim, D., and Weiss, R.A. (1986). The effects of diluents on the ionic interactions in sulfonated polystyrene ionomers. J. Polym. Sci.: Part C: Polym. Lett. 24: 263–8.

    Article  CAS  Google Scholar 

  • Folkes, M.J., ed. (1985). Processing Structure and Properties of Block Copolymers. London: Elsevier Applied Science Publishers.

    Google Scholar 

  • Gomez, M.A. and Tonelli, A.E. (1991). Structural, conformational, and motional studies of crystalline polymorphs of syndiotactic polystyrene. Macromolecules 24: 3533–6.

    Article  CAS  Google Scholar 

  • Gorda, K.R. and D.G. Peiffer (1992). Properties of sulfonated poly(butylene terephthalate). J. Polym. Sci.: Part B: Phys. 30: 281–92.

    Article  CAS  Google Scholar 

  • Hamed, G.R. and Han, K.T. (1990). Mechanical properties of vulcanizates containing covalent, ionic, and mixed crosslinks. Rubber Chem. Tech. 63: 806–24.

    Article  CAS  Google Scholar 

  • Hara, M. and Jar, P. (1987). Effect of ionic aggregates on the fatigue properties of ionomers. Polym. Common. 28: 52–4.

    CAS  Google Scholar 

  • Hara, M., Jar, P., and Sauer, J. A. (1988). Fatigue behavior of ionomers. 1. Ion content effect on sulfonated polystyrene ionomers. Macromolecules 21: 3183–6.

    Article  CAS  Google Scholar 

  • Hara, M., Jar, P., and Sauer, J.A. (1990a). Fatigue behavior of ionomers. 2. Effect of counterion on sulfonated polystyrene ionomers. Macromolecules 23: 4465–9.

    Article  CAS  Google Scholar 

  • Hara, M., Jar, P., and Sauer, J.A. (1990b). Fatigue behavior of ionomers. 3. Effect of excess neutralizing agent on sulfonated polystyrene ionomers. Macromolecules 23: 4964–9.

    Article  CAS  Google Scholar 

  • Hara, M., Jar, P., and Sauer, J.A. (1991). Effect of sample history on ionic aggregate structures of sulfonated polystyrene ionomers. Polymer 32: 1380–3.

    Article  CAS  Google Scholar 

  • Hara, M., Eisenberg, A., Storey, R.F., and Kennedy, J.P. (1986). Ion-hopping kinetics in threearm star polyisobutylene-based model ionomers. In Coulombic Interactions in Macromolecular Systems. A. Eisenberg and F.E. Bailey, eds. Washington DC: American Chemical Society.

    Google Scholar 

  • Hara, M., Bellinger, M., and Sauer, J.A. (1992). Deformation and fracture behavior of polystyrene ionomer and ionomer blends. Colloid Polym. Sci. 270: 652–8.

    Article  CAS  Google Scholar 

  • Hertzberg, R.W. and Manson, J.A. (1980). Fatigue of Engineering Plastics. New York: Academic Press.

    Google Scholar 

  • Hodge, I.M. and Eisenberg, A. (1978). Dielectric and mechanical relaxations in Nafion precursor. Macromolecules 11: 289–93.

    Article  CAS  Google Scholar 

  • Jérôme, R., Horrion, J., Fayt, R., and Teyssié, Ph. (1984). Halato-telechelic polymers. 10. Effect of the ionic end groups on the glan transition temperature. Macromolecules 17: 2447–50.

    Article  Google Scholar 

  • Kinloch, A.J. and Young, R.J. (1983). Fracture Behavior of Polymers. New York: Applied Science.

    Google Scholar 

  • Kyu, T. and Eisenberg, A. (1982). Mechanical relaxations in perfluorosulfonate ionomer membranes. In Perfluorinated Ionomer Membranes. A. Eisenberg and H.L. Yeager, eds. Can J. Chem. pp. 79–110.

    Chapter  Google Scholar 

  • Kyu, T., Hashiyama, M., and Eisenberg, A. (1983). Dynamic mechanical properties of partially ionized and neutralized Nafion polymers. Can. J. Chem. 61: 680–7.

    Article  CAS  Google Scholar 

  • Lee, D., Register, R.A., Yang, C., and Cooper, S.L. (1988). Methylenebis(p-phenylene isocyanate)-based polyurethane ionomers. 2. Structure-property relationships. Macromolecules 21: 1005–8.

    Article  CAS  Google Scholar 

  • Legge, N.R., Holden, G., and Shroder, H.E. eds. (1987). Thermoplastic Elastomers. New York: Hanser.

    Google Scholar 

  • Legras, R., Bailly, C., Daumeric, M., Dekoninek, J.M., and Mercier, J.P. (1984). Chemical nucleation: a new concept applied to the mechanism of action of organic acid salts on the crystallization of polyethylene terephthalate and bisphenol A-polycarbonate. Polymer 25: 835–44.

    Article  CAS  Google Scholar 

  • Leibler, L., Rubinstein, M., and Colby, R.H. (1991). Dynamics of reversible networks. Macromolecules 24: 4701–7.

    Article  CAS  Google Scholar 

  • Leibler, L., Rubinstein, M., and Colby, R.H. (1993). Dynamics of telechelic ionomers. Can polymers diffuse large distances without relaxing stress? J. Phys. II. France 3: 1581–90.

    Article  CAS  Google Scholar 

  • Longworth, R. (1983). The structure and properties of ionomers. In Developments in Ionic Polymers-1. A.D. Wilson and H.J. Prosser, eds. New York: Applied Science.

    Google Scholar 

  • Lu, X., Steckle, W.P., and Weiss, R.A. (1993). Morphological studies of a triblock copolymer ionomer by small angle X-ray scattering. Macromolecules 26: 6525–30.

    Article  CAS  Google Scholar 

  • Loveday, D., Wilkes, G.L., Bheda, M.C., Shen, Y.X., and Gibson, H.W. (1955). Structure-property relationships in segmented polyviologen ionene rotaxanes. J. Macromol. Sci.-Pure Appl. Chem. A32: 1–27.

    Google Scholar 

  • Lundberg, R.D. (1987). Ionic elastomers. In Structure and Properties of Ionomers. M. Pineri and A. Eisenberg, eds. Boston: D. Reidel.

    Google Scholar 

  • Lundberg, R.D. and Makowski, H.S. (1980). A comparison of sulfonate and carboxylate ionomers. In Ions in Polymers, ACS Adv. Chem. Series No. 187, ed. A. Eisenberg, pp. 21–36. Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Makowski, H.S. and Lundberg, R.D. (1980). Plasticization of metal sulfonate-containing EPDM stearic acid derivatives. In Ions in Polymers, ACS Adv. Chem. Series No. 187, ed. A. Eisenberg, pp. 37–52. Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Makowski, H.S., Agarwal, P.K., Weiss, R.A., and Lundberg, R.D. (1979). Ionic domain plasticizers: tensile enhancement of zinc sulfonate EPDM with zinc stearate. Polym. Prepr. 20(2): 281–6.

    CAS  Google Scholar 

  • Matsuura, H. and Eisenberg, A. (1976). Glass transitions of ethyl acrylate-based ionomers. J. Polym. Sci. Polym. Phys. Ed. 14: 1201–9.

    Article  CAS  Google Scholar 

  • Mattera, V.D. and Risen, Jr., W.M. (1986). Composition dependence of glass transition temperature of sulfonated-polystyrene ionomers. J. Polym. Sci.: Part B: Polym. Phys. 24: 753–60.

    Article  CAS  Google Scholar 

  • Mauritz, K.A. and Fu, R.-M. (1988). Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers. 1. NaOH and NaCl systems. Macromolecules 21: 1324–33.

    Article  CAS  Google Scholar 

  • Mauritz, K.A. and Yun, H. (1988). Dielectric relaxation studies of ion motions in electrolyte containing perfluorosulfonate ionomers. 2. CH3COONa, KC1, and KI systems. Macromolecules 21: 2738–43.

    Article  CAS  Google Scholar 

  • Mauritz, K.A. (1989). Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosolfonate ionomers. 4. Long-range ion transport. Macromolecules 22: 4483–88.

    Article  CAS  Google Scholar 

  • Mauritz, K.A. and Yun, H. (1989). Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers. 3. ZnSO4 and CaCl2 systems. Macromolecules 22: 220–5.

    Article  CAS  Google Scholar 

  • Moore, R.B. and Martin, C.R. (1989). Morphology and chemical properties of the Dow perfluorosulfonate ionomers. Macromolecules 22: 3594–9.

    Article  CAS  Google Scholar 

  • Moore, R.B., Cable, K.M., and Croley, T.L. (1992). Barrier to flow in semicrystalline ionomers. A procedure for preparing melt-processed perfluorosulfonate ionomer films and membranes. J. Membrane Sci. 75: 7–14.

    Article  CAS  Google Scholar 

  • Nakano, Y. and MacKnight, W.J. (1984). Dynamic mechanical properties of perfluorocarboxylate ionomers. Macromolecules 17: 1585–91.

    Article  CAS  Google Scholar 

  • Noshay, A. and McGrath, J.E. (1977). Block Copolymers. New York: Academic Press.

    Google Scholar 

  • Orler, E.B., Yontz, D.J., and Moore, R.B. (1993). Sulfonation of syndiotactic polystyrene for model semicrystalline ionomers investigations. Macromolecules 26: 5157–60.

    Article  CAS  Google Scholar 

  • Peiffer, D.G. (1992). Structure and properties of blends containing ethylene-methacrylate copolymers. J. Polym. Sci.: Part B: Phys. 30: 1045–53.

    Article  CAS  Google Scholar 

  • Rutkowska, M. and Eisenberg, A. (1984). Ionomeric blends. 3. Miscibility enhancement via ionic interactions in polyurethane-styrene blends. Macromolecules 17: 821–4.

    Article  CAS  Google Scholar 

  • Struick, L.C.E. (1978). Physical Aging in Amorphous Polymers and Other Materials. New York: Elsevier.

    Google Scholar 

  • Tant, M.R. and Wilkes, G.L. (1981). An overview of the nonequilibrium behavior of polymer glasses. Polym. Eng. Sci. 14: 874–95.

    Article  Google Scholar 

  • Tant, M.R., Darst, K.P., Lee, K.D., and Martin, C.W. (1989). Structure and properties of short-side-chain perfluorosulfonate ionomers. In Multiphase Polymers: Blends and Ionomers, ACS Symposium Series No. 395, ed. L.A. Utracki and R.A. Weiss, pp. 370–400. Washington DC: American Chemical Society.

    Chapter  Google Scholar 

  • Venkateshwaran, L.N., Leir, C.E., and Wilkes, G.L. (1991). Selective plasticization of the ionic domains in a segmented thermoplastic ionene cationomer. J. Appl. Polym. Sci. 43: 951–66.

    Article  CAS  Google Scholar 

  • Venkateshwaran, L.N., Tant, M.R., Wilkes, G.L., Charlier, P., and Jérôme, R. (1992a). Structure-property comparison of sulfonated and carboxylated telechelic ionomers based on polyisoprene. Macromolecules 25: 3996–4001.

    Article  CAS  Google Scholar 

  • Venkateshwaran, L.N., York, G.A., DePorter, C.D., McGrath, J.E., and Wilkes, G.L. (1992b). Morphological characterization of well defined methacrylic based di- and triblock ionomers. Polymer 33: 2277–86.

    Article  CAS  Google Scholar 

  • Visser, S.A. and Cooper, S.L. (1991). Comparison of the physical properties of carboxylated and sulfonated model polyhurethane ionomers. Macromolecules 24: 2576–83.

    Article  CAS  Google Scholar 

  • Ward, I.M. (1983). Mechanical Properties of Solid Polymers. New York: John Wiley.

    Google Scholar 

  • Ward, T.C. and Tobolsky, A.V. (1967). Viscoelastic study of ionomers. J. Appl. Polym. Sci. 11: 2403–15.

    Article  CAS  Google Scholar 

  • Weiss, R.A. (1982). The effect of aging on the thermal behavior of sulfonated polystyrene. J. Polym. Sci.: Polym. Phys. Ed. 20: 65–72.

    Article  CAS  Google Scholar 

  • Weiss, R.A., Lefeler, J., and Toriumi, H. (1983). The influence of thermal history on the microstructure of sulfonated polystyrene ionomers. J. Polym. Sci.: Polym. Lett. Ed. 21: 661–7.

    Article  CAS  Google Scholar 

  • Weiss, R.A. and Lefealer, J.A. (1986). The influence of thermal history on the small-angle X-ray scattering of sulfonated polystyrene ionomers. Polymer 27: 3–10.

    Article  CAS  Google Scholar 

  • Weiss, R.A., Fitzgerald, J.J, and Kim, D. (1991a). Viscoelastic behavior of plasticized sulfonated polystyrene ionomers. Macromolecules 24: 1064–70.

    Article  CAS  Google Scholar 

  • Weiss, R.A., Sen, A., Willis, C.L., and Pottick, L.A. (1991b). Block copolymer ionomers: 1. Synthesis and physical properties of sulphonated poly(styrene-ethylene/butylene-styrene). Polymer 32: 1876–74.

    Google Scholar 

  • Weiss, R.A., Sen, A., Pottick, L.A., and Willis, C.L. (1991c). Block copolymer ionomers: 2. viscoelastic and mechanical properties of sulphonated poly(styrene-ethylene/butylenestyrene). Polymer 32: 2785–92.

    Article  CAS  Google Scholar 

  • Williams, J.G. (1984). Fracture Mechanics of Polymers. New York: Ellis Horwood.

    Google Scholar 

  • Yang, S., Sun, K., and Risen, Jr., W.M. (1990). Preparation and thermal characterization of the glass transition temperatures of sulfonated polystyrene-metal ionomers. J. Polym. Sci.: Part B: Polym. Phys. 28: 1685–97.

    Article  CAS  Google Scholar 

  • Yang, S., Li, C., and Cooper, S.L. (1991). Synthesis and characterization of polydimethylsiloxane polyurea-urethanes and related zwitterionomers. J. Polym. Sci.: Part B: Phys. 29: 75–86.

    Article  CAS  Google Scholar 

  • Yeo, S.C. and Eisenberg, A. (1977). Physical properties and supermolecular structure of perfluorinated ion-containing (Nafion) polymers. J. Appl. Polym. Sci. 21: 875–98.

    Article  CAS  Google Scholar 

  • Yu, X., Nagarajan, M.R., Li, C., Gibson, P.E., and Cooper, S.L. (1986). Poly(chloropropyl methyl-dimethoxysilane)-polyurethane elastomers: synthesis and properties of segmented copolymers and related zwitterionomers. J. Polym. Sci.: Part B: phys. 24: 2681–702.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Tant, M.R., Wilkes, G.L. (1997). Structure and properties of hydrocarbon-based ionomers. In: Tant, M.R., Mauritz, K.A., Wilkes, G.L. (eds) Ionomers. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1461-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1461-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7153-6

  • Online ISBN: 978-94-009-1461-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics