Skip to main content

Mechanisms of Laser-Induced Deposition from the Gas Phase

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 139))

Abstract

Laser-induced deposition from the gas phase has been extensively studied in the last several years. Because a high degree of spatial localization can be achieved via deposition employing a tightly focused laser beam, a number of applications for laser deposition have been found in the microelectronics field. For example, highly localized deposition induced by a scanning, focused cw laser beam has been successfully used for direct writing of interconnection lines in integrated circuits (1–4). Related applications have been found in integrated circuit modification and customization (5), direct-writing of waveguides (6), and localized deposition for repair of clear defects in lithographic masks (7–9). A mask repair system based on laser deposition of a metal repair patch is now commercially available (10)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Y. Tsao, D. J. Ehrlich, D. J. Silversmith, and R. W. Mountain, IEEE Elect. Dev. Lett.,EDL-3, 164 (1982)

    Article  CAS  Google Scholar 

  2. B. M. McWilliams, I. P. Herman, F. Mitlitsky, R. A. Hyde, and L. L. Wood, Appl. Phys. Lett., 43, 946 (1983)

    Article  CAS  Google Scholar 

  3. I. P. Herman, B. M. McWilliams, F. Mitlitsky. H. W. Chin, R. A. Hyde, and L. L. Wood, “Laser-Controlled Chemical Processing of Surfaces”, A. W. Johnson, D. J. Ehrlich. and H. R. Schlossberg, ed., Elsiever, New York, 1984, pp. 29–34

    Google Scholar 

  4. I. P. Herman, Springer Ser. Chem. Phys., 39, 396 (1984)

    CAS  Google Scholar 

  5. D. J. Silversmith, D. J. Ehrlich, J. Y. Tsao, R. W. Mountain, and J. H. C. Sedlacek, “Laser- Controlled Chemical Processing of Surfaces”, A. W. Johnson, D. J. Ehrlich, and H. R. Schlossberg, ed., Elsiever, New York, 1984, pp. 55–60

    Google Scholar 

  6. J. Y. Tsao, R. A. Becker, D. J. Ehrlich, and F. J. Leonberger, Appl. Phys. Lett., 42, 559 (1983)

    Article  CAS  Google Scholar 

  7. D. J. Ehrlich, R. M. Osgood, Jr., D. J. Silversmith, and T. F. Deutsch, IEEE Elect. Dev. Lett,, EDL-1, 101 (1980)

    Google Scholar 

  8. J. N. Randall, D. J. Ehrlich, and J. Y. Tsao, J. Vac. Sci. Technol. B, 3, 262 (1985)

    Article  CAS  Google Scholar 

  9. M. M. Oprysko, M. W. Beranek, and P. L. Young, IEEE Electr. Dev. Lett EDL-6, 344 (1985)

    Article  CAS  Google Scholar 

  10. Quantronix Corp.. Smithtown, New York

    Google Scholar 

  11. D. J. Ehrlich and J. Y. Tsao, J. Vac. Sci. Technol. B, 1. 969 (1983)

    Article  CAS  Google Scholar 

  12. D. J. Ehrlich, R. M. Osgood. Jr.. and T. F. Deutsch, J. Vac. Sci. Technol., 21, 23 (1982)

    Article  CAS  Google Scholar 

  13. F. A. Houle, Appl. Phys. A, 41, 315 (1986)

    Article  Google Scholar 

  14. M. Lax, Appl. Phys. Lett., 33, 786 (1978)

    Article  Google Scholar 

  15. J. E. Moody and R. H. Hendel, J. Appl. Phys., 53, 4364 (1982)

    Article  CAS  Google Scholar 

  16. J. P. Colinge and F. Van de Wiele, J. Appl. Phys., 52, 4796 (1981)

    Article  Google Scholar 

  17. I. D. Calder and R. Sue. J. Appl. Phys., 53. 4357 (1982)

    Article  Google Scholar 

  18. T. T. Kodas, T. H. Baum, and P. B. Comita. J. Appl. Phys., 61, (1987), in press

    Google Scholar 

  19. C. R. Moylan. T. H. Baum, and C. R. Jones. Appl. Phys. A. 40, 1 (1986)

    Article  Google Scholar 

  20. S. D. Allen, J. Appl. Phys.. 52, 6501 (1981)

    Article  CAS  Google Scholar 

  21. D. Bauerle, Springer Ser. Chem. Phys., 39, 166 (1984)

    Google Scholar 

  22. S. D. Allen, J. A. Goldstone, J. P. Stone, and R. Y. Jan, J. Appl. Phys., 59, 1653 (1986)

    Article  CAS  Google Scholar 

  23. H. E. Carlton and J. H. Oxley. Am. Inst. Chem. Eng. J., 12. 86 (1967)

    Google Scholar 

  24. T. H. Baum and C. R. Jones, Appl. Phys. Lett.. 47, 583 (1985)

    Article  Google Scholar 

  25. T. H. Baum and C. R. Jones, J. Vac. Sci. Technol. B, 4, 1187 (1986)

    Article  CAS  Google Scholar 

  26. I. P. Herman, R. A. Hyde. B. M. McWilliams, A. H. Weisberg, and L. L. Wood, “Laser Diagnostics and Photochemical Processing for Semiconductor Devices”, R. M. Osgood. S. R. J. Brueck. and H. R. Schlossberg, ed., Elsiever, New York, 1983, pp. 9–18

    Google Scholar 

  27. T. T. Kodas, T. H. Baum, and P. B. Comita, J. Appl. Phys., in press28

    Google Scholar 

  28. D. C. Skouby and K. F. Jensen, Proc. Soc. Photo-Opt. Instrum. Eng.. 797 (1987), in press

    Google Scholar 

  29. T. H. Baum, J. Electrochem. Soc., 134 (1087), in press

    Google Scholar 

  30. P. B. Comita and T. T. Kodas, J. Appl. Phys., in press

    Google Scholar 

  31. W. H. Weinberg and R. P. Merrill, J. Vac. Sci. Technol., 8, 718 (1971)

    Article  CAS  Google Scholar 

  32. E. N. Fuller, P. D. Schettler, and J. C. Giddings, Ind. Eng. Chem., 58, (5), 18 (1966)

    Article  CAS  Google Scholar 

  33. R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport Phenomena”, Wiley, New York, 1960, p. 510

    Google Scholar 

  34. R. M. Osgood and D. J. Ehrlich, Opt. Lett., 7, 385 (1982)

    Article  CAS  Google Scholar 

  35. G. W. Tyndall and R. L. Jackson, to be published

    Google Scholar 

  36. F. A. Houle, R. J. Wilson, and T. H. Baum, J. Vac. Sci. Technol. A, 4, 2452 (1986)

    Article  CAS  Google Scholar 

  37. S. R. J. Brueck and D. J. Ehrlich, Phys. Rev. Lett., 48, 1678 (1982)

    Article  CAS  Google Scholar 

  38. T. H. Wood, J. C. White, and B. A. Thacker, Appl. Phys. Lett., 42, 408 (1983)

    Article  CAS  Google Scholar 

  39. D. J. Ehrlich, R. M. Osgood, Jr., and T. F. Deutsch. IEEE J. Quant. Electr.,QE-16, 1233 (1980)

    Google Scholar 

  40. M. S. Chiù, K. P. Shen, and Y. K. Ku, Appl. Phys. B, 37, 63 (1985)

    Article  Google Scholar 

  41. D. J. Ehrlich. R. M. Osgood, Jr., and T. F. Deutsch, J. Electrochem. Soc., 128, 2039 (1981)

    Article  CAS  Google Scholar 

  42. M. S. Chiu, Y. G. Tseng, and Y. K. Ku, Opt. Lett., K), 113 (1985)

    Google Scholar 

  43. R. L. Jackson and G. W. Tyndall, J. Appl. Phys., 62, (1987), in press

    Google Scholar 

  44. A. W. Adamson, “Physical Chemistry of Surfaces”, Fourth Ed., Wiley, New York, 1982, p. 534

    Google Scholar 

  45. D. J. Ehrlich and R. M. Osgood, Jr., Chem. Phys. Lett., 79, 381 (1981)

    Article  CAS  Google Scholar 

  46. A QCM was used to monitor relativedeposition rates from Cr(CO) induced by a pulsed laser beam oriented parallel to the crystal surface by T. M. Mayer, G. J. Fisanick, T. S. Eichelberger IV, J. Appl. Phys., 53, 8462 (1982)

    Article  CAS  Google Scholar 

  47. A QCM was also used to monitor arc lamp deposition from Pb(C2H5)4over a large area by L. J. Rigby, Trans. Faraday, Soc., 65. 2421 1969

    Article  CAS  Google Scholar 

  48. N. S. Gluck. G. J. Wolga, C. E. Bartosch, W. Ho, and Z. Ying, J. Appl. Phys., 61, 998 1987

    Article  CAS  Google Scholar 

  49. Lack of Cr(CO) e adsorption on a QCM crystal was also noted by Mayer et al. 46

    Google Scholar 

  50. The average Cr-CO bond dissociation energy is 1.11 eV. See ref. 50

    Google Scholar 

  51. G. Pilcher, M. J. Ware, and D. A. Pittam, J. Less-Common Met., 42, 223 (1975)

    Article  CAS  Google Scholar 

  52. See also K. E. Lewis, D. M. Golden, and G. P. Smith, J. Am. Chem. Soc. 106, 3905 1984

    Article  CAS  Google Scholar 

  53. The average Mo-CO bond dissociation energy is 1.57 eV. See ref. 50

    Google Scholar 

  54. The average W-CO bond dissociation energy is 1.84 eV. See ref. 50

    Google Scholar 

  55. G. W. Tyndall and R. L. Jackson, J. Am. Chem. Soc. 109, 582 1987

    Article  CAS  Google Scholar 

  56. G. W. Tyndall and R. L. Jackson, to be published

    Google Scholar 

  57. T. R. Fletcher and R. N. Rosenfeld, J. Am. Chem. Soc., 107, 2203 1985

    Article  CAS  Google Scholar 

  58. T. A. Seder, S. P. Church, and E. Weitz, J. Am. Chem. Soc., 108, 4721 1986

    Article  CAS  Google Scholar 

  59. W. Tumas, B. Gitlin, A. M. Rosan, and J. T. Yardley, J. Am. Chem. Soc., 104, 55 1982

    Article  CAS  Google Scholar 

  60. T. A. Seder, A. J. Ouderkirk. and E. Weitz, J. Chem. Phys., 85, 1977 1986

    Article  CAS  Google Scholar 

  61. G. Nathanson, B. Gitlin. A. M. Rosan, and J. T. Yardley, J. Chem. Phys., 74, 361 (981

    Article  CAS  Google Scholar 

  62. P. J. Young, R. K. Gosavi, J. Connor, O. P. Strausz, and H. E. Gunning, J. Chem. Phys., 58, 5280 1973

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Martinus Nijhoff Publishers

About this chapter

Cite this chapter

Jackson, R.L., Kodas, T.T., Tyndall, G.W., Baum, T.H., Comita, P.B. (1988). Mechanisms of Laser-Induced Deposition from the Gas Phase. In: Ehrlich, D.J., Nguyen, V.T. (eds) Emerging Technologies for In Situ Processing. NATO ASI Series, vol 139. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1409-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1409-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7130-7

  • Online ISBN: 978-94-009-1409-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics