Skip to main content

Deterministic fracture kinetics theory and constitutive laws

  • Chapter
Fracture Kinetics of Crack Growth

Part of the book series: Mechanical Behavior of Materials ((MBOM,volume 1))

Abstract

Subcriticai crack growth is usually more complex than a sequence of single bond-breaking steps. All mechanisms consist of various processes; and these processes may include diverse steps, each represented by the appropriate expression of the elementary rate constant [1, 3, 4]7*:

$$ {{k}_{i}} = \frac{{kT}}{h}\exp \left( { - \frac{{\Delta G_{i}^{ \ne }\pm {{W}_{i}}}}{{kT}}} \right). $$
(2.1)

Obviously, to control crack growth one must first determine the specific combination of steps that compose the mechanism of fracture, and describe these steps in terms of the appropriate rate constants. Fracture kinetics provides the method to achieve this, through the derivation of the constitutive equation that expresses the complex mechanism of crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Part 1

  1. A. S. Krausz and H. Eyring: Deformation Kinetics, Wiley-Interscience (1975).

    Google Scholar 

  2. S. Krausz and H. Eyring: Chemical kinetics of plastic deformation, J. Appl. Phys. 42 (1971), p. 2382.

    CAS  Google Scholar 

  3. S. Glasstone, K. J. Laidler and H. Eyring: The Theory of Rate Processes, McGraw-Hill (1941).

    Google Scholar 

  4. S. W. Benson: The Foundations of Chemical Kinetics, McGraw-Hill. (1960) .

    Google Scholar 

  5. S. D. Brown: Multibarrier kinetics of brittle fracture: I, Stress dependence of the subcritical crack velocity, J. Am. Ceram. Soc. 62 (1979), pp. 515–524.

    CAS  Google Scholar 

  6. A. S. Krausz, K. Krausz and D. Necsulescu: Reliability theory of stochastic fracture processes in sustained loading: Part I, Z. Naturforsch. 38a (1983), pp. 719–722.

    Google Scholar 

  7. A. S. Krausz and K. Krausz: The theory of thermally activated fracture: environment assisted crack propagation, Canad. Metall. Quarterly 23 (1984), pp. 107–113.

    CAS  Google Scholar 

  8. R. Lawn: An atomistic model of kinetic crack growth in brittle solids, J. Mater. Sci. 10 (1975), pp. 469–480.

    Google Scholar 

  9. R. Thomson: Theory of chemically assisted fracture, J. Mater. Sci. 15 (1980), pp. 1014–1034.

    CAS  Google Scholar 

  10. R. Clarke, B. R. Lawn and D. H. Roach: The role of surface forces in fracture, in Fracture Mechanics of Ceramics, Vol. 8 (R. C. Bradt, A. G. Evans and D. P. H. Hasselman, eds.), Plenum Press (1986), pp. 341–350.

    Google Scholar 

  11. S. D. Brown: A multibarrier kinetics approach to subcritical crack growth in glasses and ceramics, Am. Ceram. Soc. Bull. 55 (1976), pp. 395–000.

    Google Scholar 

  12. E. D. Case, J. R. Smyth and O. Hunter, Jr.: Microcrack healing during the temperature cycling of single phase ceramics, in Fracture Mechanics of Ceramics, Vol. 5 (R. C. Bradt, A. G. Evans and D. P. H. Hasselman, eds.), Plenum Press (1983), pp. 507–530.

    Google Scholar 

  13. C. Bunker and T. A. Michalske: Effect of surface corrosion on glass fracture, in Fracture Mechanics of Ceramics, Vol. 8 (R. C. Bradt, A. G. Evans and D. P. H. Hasselman, eds.), Plenum Press (1986), pp. 391–412.

    Google Scholar 

  14. S. M. Wiederhorn: Mechanisms of subcritical crack growth in glass, in Fracture Mechanics of Ceramics, Vol. 4 (R. C. Bradt, D. P. H. Hasselman and F. F. Lange, eds.), Plenum Press (1978), pp. 549–580.

    Google Scholar 

  15. A. Kelly: Strong Solids, Clarendon Press, Oxford (1966).

    Google Scholar 

  16. J. W. Obreimoff: The splitting strength of Mica, Proc. Royal Soc. A127 (1930), pp. 290–297.

    Google Scholar 

  17. E. Orowan: Die Zugfestigkeit von Glimmer und das Problem der Technischen Festigkeit, Z. Physik 81 (1933), pp. 235–255.

    Google Scholar 

  18. A. J. Forty and C. T. Forwood: The healing of cleavage cracks in alkali halide crystals, Trans. Brit. Ceram. Soc. 62 (1963), pp. 715–724.

    CAS  Google Scholar 

  19. S. M. Widerhorn and P. R Townsend: Crack healing in glass, J. Am. Ceram. Soc. 534(1970), pp. 486–489.

    Google Scholar 

  20. B. R. Lawn and T. R. Wilshaw: Fracture of Brittle Solids, Cambridge University Press (1975).

    Google Scholar 

  21. A. S. Krausz: The random walk theory of crack propagation, Eng. Fract. Mech. 12 (1979), pp. 499–504.

    Google Scholar 

  22. S. M. Wiederhorn, B. J. Hockey and D. E. Roberts: Effect of temperature on the fracture of sapphire, Phil. Mag. 28 (1973), pp. 783–796.

    CAS  Google Scholar 

  23. A. S. Krausz and K. Krausz: A fracture kinetics representation of fatigue crack propagation rate, Proc. of the 2nd International Conference on Fatigue and Fatigue Thresholds (C. H. Beevers, J. Bachlund, P. Lukas, J. Schijve and R. O. Ritchie, eds.) (1984), pp. 497–510.

    Google Scholar 

  24. T. O’D. Hanley and A. S. Krausz: Thermally activated deformation, I: Method of analysis, J. Appl. Phys. 45 (1974), p. 2013.

    Google Scholar 

  25. A. S. Krausz: Time-dependent crack propagation in linear-elastic solids, J. Appl. Phys. 49 (1978), pp. 3774–3778.

    Google Scholar 

  26. H. M. Cekirge, W. R. Tyson and A. S. Krausz: Static corrosion and static fatigue of glass, J. Am. Ceram. Soc. 58 (1976), pp. 265–266.

    Google Scholar 

  27. W. R. Tyson, H. M. Cekirge and A. S. Krausz: Thermally activated fracture of glass, J. Mater. Sci. 11 (1976), pp. 780–782.

    CAS  Google Scholar 

  28. R. Thomson, C. Hsieh and V. Rana: Lattice trapping of fracture cracks, J. Appl. Phys. 42 pp. 3154–3160.

    CAS  Google Scholar 

  29. S. D. Brown: The multibarrier kinetics of subcritical brittle crack growth, Proc. of the 6th Canadian Congress on Applied Mechanics (1977), pp. 257–258.

    Google Scholar 

  30. C. Hsieh and R. Thomson: Lattice theory of fracture and crack creep, J. Appl Phys. 44 (1973), pp. 2051–2063.

    Google Scholar 

  31. R. Lawn: An atomistic model of kinetic crack growth in brittle solids, J. Mater. Sci. 10 (1973), pp. 469–480.

    Google Scholar 

  32. J.-C. Pollet and S. J. Burns: Thermally activated crack propagation theory, Int. J. Fract. 13 (1977), pp. 667–697.

    Google Scholar 

  33. J.-C. Pollet and S. J. Burns: An analysis of slow crack propagation data in PMAA and brittle materials, Int. J. Fract. 13 (1977), pp. 775–789.

    CAS  Google Scholar 

  34. S. M. Wiederhorn: Influence of water vapor on crack propagation in soda-lime glass, J. Am. Ceram. Soc. 50 (1967), pp. 407–414.

    CAS  Google Scholar 

  35. S. M. Wiederhorn: Subcritical crack growth in ceramics, in Fracture Mechanics of Ceramics, Vol. 2 (R. C. Bradt, D. P. H. Hasselman and F. F. Lange, eds.), Plenum Press (1974), pp. 613–646.

    Google Scholar 

  36. K. J. Laidler: Chemical Kinetics, McGraw-Hill (1965).

    Google Scholar 

  37. A. S. Krausz: The deformation and fracture kinetics of stress corrosion cracking, Int. J. Fract. 14 (1978), pp. 5–15.

    CAS  Google Scholar 

  38. S. Krausz: The theory of thermally activated processes in brittle stress corrosion cracking, J. Eng. Fract. Mech. 11 (1979), pp. 33–42.

    Google Scholar 

  39. S. H. Knickerbocker, A. Zangvil and S. D. Brown: Displacement rate and temperature effects in fracture of a hot-pressed silicon nitride at 1100 to 1325 °C, J. Am. Ceram. Soc. 67 (1984), pp. 365–368.

    CAS  Google Scholar 

  40. S. H. Knickerbocker, A. Zangvil and S. D. Brown: High-temperature mechanical properties and microstructure for hot-pressed silicon nitrides with amorphous and crystalline intergranular phases, J. Am. Ceram. Soc. 68 (1985), pp. C99–C101.

    CAS  Google Scholar 

Part 2

  1. R. W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 2nd edn., John Wiley and Sons (1983).

    Google Scholar 

  2. R. Thomson: Theory of chemically assisted fracture (Part I) and E. R. Fuller and R. Thomson (Part 2), J. Mater. Sci. (1980), pp. 1014–1034.

    Google Scholar 

  3. H. E. Boyer and T. L. Gall (eds.): Metals Handbook, Desk edn., American Society for Metals (1985).

    Google Scholar 

  4. T. Yokobori: An Interdisciplinary Approach to Fracture and Strength of Solids, Wolters-Noordhoff Publishing (1968).

    Google Scholar 

  5. H. Liebowitz (ed.): Fracture, and Advanced Treatise, Vol. 3, Engineering Fundamentals and Environmental Effects Academic Press (1971).

    Google Scholar 

  6. K. J. Laidler: Chemical Kinetics, McGraw-Hill (1965).

    Google Scholar 

  7. S. M. Wiederhorn and L. H. Boltz: Stress corrosion and static fatigue of glass, J. Am. Ceram. Soc. 53(10) (1970), pp. 543–548.

    CAS  Google Scholar 

  8. B. R. Lawn and T. R. Wilshaw: Fracture of Brittle Solids, Cambridge University Press (1975).

    Google Scholar 

  9. R. J. Charles and W. B. Hillig: The kinetics of glass failure by stress corrosion cracking, Mechanical Strength of Glass and Ways of Improving It, Union Scientifique Continentale du Verre (1962), pp. 511–527.

    Google Scholar 

  10. W. B. Hillig and R. J. Charles: Surfaces, stress-dependent surface reactions and strength, High-strength Materials (F. Zackay, ed.), Wiley-Interscience (1964), pp. 682–701.

    Google Scholar 

  11. J. C. Scully (ed.): The Theory of Stress Corrosion Cracking in Alloys, NATO Scientific Affairs Division (1971).

    Google Scholar 

  12. S. M. Wiederhorn: Influence of water vapor on crack propagation in soda-lime glass, J. Am. Ceram. Soc. 50(8) (1967), pp. 407–414.

    CAS  Google Scholar 

  13. J. K. Tien, A. W. Thompson, I. M. Bernstein and R. J. Richards: Hydrogen transport by dislocations, Met. Trans. A. 7A (1976), pp. 821–829.

    CAS  Google Scholar 

  14. S. D. Brown: Multibarrier kinetics of brittle fracture: I, Stress dependence of subcritical crack velocity, J. Am. Ceram. Soc. 62 (1979), pp. 515–524.

    CAS  Google Scholar 

  15. J.-C. Pollet and S. J. Burns: Thermally activated crack propagation — theory, Int. J. Fract. Mech. 13 (1977), pp. 667–679.

    Google Scholar 

  16. S. D. Brown: A multibarrier rate process approach to subcritical crack growth, in Fracture Mechanics of Ceramics (R. C. Bradt, D. P. H. Hasselman and F. F. Lange, eds.), Vol. 4, Plenum Press (1978), pp. 597–621.

    Google Scholar 

  17. G. W. Powell and S. E. Mahmoud: Failure analysis and prevention, in Metals Handbook (9th edn.), Vol. 11, American Society for Metals (1986).

    Google Scholar 

  18. J. R. Newby (coordinator): Metals Handbook (9th edn.), Vol. 8, Mechanical Testing, American Society for Metals (1985).

    Google Scholar 

  19. A. S. Krausz: The theory of thermally activated processes in brittle stress corrosion cracking, J. Eng. Fract. Mech. 11 (1979), pp. 33–42.

    Google Scholar 

  20. H. H. Johnson: Hydrogen brittleness in hydrogen-oxygen gas mixtures, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, NACE-5, National Association of Corrosion Engineers (1977), pp. 382–389.

    Google Scholar 

  21. S. J. Hudak and R. P. Wei: Hydrogen enhanced crack growth in 18 Ni maraging steels, Metall. Trans. 7A (1976), pp. 235–241.

    CAS  Google Scholar 

  22. S. M. Wiederhorn, B. J. Hockey and D. E. Roberts: Effect of temperature on the fracture of sapphire, Phil. Mag. 28 (1973), pp. 783–796.

    CAS  Google Scholar 

  23. S. M. Wiederhorn: A chemical interpretation of static fatigue, J. Am. Ceram. Soc. 55(2) (1972), pp. 81–85.

    CAS  Google Scholar 

  24. W. R. Tyson, H. M. Cekirge and A. S. Krausz: Thermally activated fracture of glass, J. Mater. Sci. 11 (1976), p. 780.

    CAS  Google Scholar 

  25. H. M. Cekirge, W. R. Tyson and A. S. Krausz: Static corrosion and static fatigue of glass, J. Am. Ceram. Soc. 58 (1976), p. 265.

    Google Scholar 

  26. A. S. Krausz: The deformation and fracture kinetics of stress corrosion cracking, Int. J. Fract. 14 (1978), pp. 5–15.

    CAS  Google Scholar 

  27. S. Krausz and K. Krausz: The inherently probabilistic character of subcritical fracture processes, Trans. ASME, J. Mech. Design, Special Issue: Reliability, Stress Analysis, and Failure Prevention 104 (1982), pp. 666–670.

    Google Scholar 

  28. S. Krausz and K. Krausz: A unified fracture kinetics representation of the three regions of stress corrosion cracking, Int. J. Fract. 23 (1900), pp. 169–175.

    Google Scholar 

  29. S. M. Wiederhorn, H. Johnson, A. M. Diness and H. A. Heuer: Fracture of glass in vacuum, J. Am. Ceram. Soc. 57(8) (1974), pp. 336–341.

    CAS  Google Scholar 

  30. A. S. Krausz: Time dependent crack propagation in linear-elastic solids, J. Appl. Phys. 49 (1978), pp. 3774–3778.

    Google Scholar 

  31. S. W. Freiman: Effects of alcohols on crack propagation in glass, J. Am. Ceram. Soc. 57(8) (1974), pp. 350–353.

    CAS  Google Scholar 

  32. A. G. Evans and M. Linzer: Failure prediction in structural ceramics using acoustic emission, J. Am. Ceram. Soc. 56 (1973), pp. 575–581.

    CAS  Google Scholar 

  33. S. M. Wiederhorn: Mechanisms of subcritical crack growth in glass, in Fracture Mechanics of Ceramics, Vol. 4 (R. C. Bradt, D. P. H. Hasselman and F. F. Lange, eds.), Plenum Press (1978), pp. 549–580.

    Google Scholar 

  34. K. Sadananda and P. Shahinian: Creep-fatigue crack growth, in Cavities and Cracks in Creep and Fatigue (J. Gittus, ed.), Applied Science Publishers (1981), pp. 109–195.

    Google Scholar 

  35. K. Sadananda and P. Shahinian: Evaluation of J* parameter for creep crack growth in type 316 stainless steel, in Fracture Mechanics, ASTM STP 791, Vol. 2 (J. C. Lewis and G. Sines, eds.), American Society for Testing and Materials (1983), pp. II–183–II–196.

    Google Scholar 

  36. F. Garofalo: Fundamentals of Creep and Creep Rupture in Metals, The Macmillan Co. (1965).

    Google Scholar 

  37. D. Broek: Elementary Engineering Fracture Mechanics, Sijthoff and Noordhoff International Publishers (1978).

    Google Scholar 

  38. Wilshire and R. J. Owen: Engineering Approaches to High Temperature Design, Pineridge Press (1983).

    Google Scholar 

  39. V. S. Kuksenko and V. P. Tamuzs: Fracture Micromechanisms of Polymer Materials, Martinus Nijhoff Publishers (1981).

    Google Scholar 

  40. J. Gittus: Cavities and Cracks in Creep and Fatigue, Applied Science Publishers (1981).

    Google Scholar 

  41. K. Sadananda, B. B. Rath and D. J. Michel:Micro and Macro Mechanics of Crack Growth, The Metallurgical Society of AIME (1982).

    Google Scholar 

  42. R. P. Wei and J. D. Landes: Correlation between sustained-load and fatigue crack growth in high-strength steels, Mat. Res. Standards 9(7) (1969), pp. 25–27 and 44–46.

    Google Scholar 

  43. A. J. McEvily and R. P. Wei: Chemistry, mechanics and microstructure, in Corrosion Fatigue, NACE-2, National Association of Corrosion Engineers (1972), p. 381.

    Google Scholar 

  44. R. P. Wei and G. W. Simmons: Environment enhanced fatigue crack growth in high-strength steels, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, NACE-5, National Association of Corrosion Engineers (1977), pp. 751–765.

    Google Scholar 

  45. R. P. Wei and G. Shim: Fracture mechanics and corrosion fatigue, in Corrosion Fatigue: Mechanics, Metallurgy, Electrochemistry, and Engineering (T. W. Crooker and B. N. Leis, eds.), ASTM STP 801, American Society for Testing and Materials (1983), pp. 5–25.

    Google Scholar 

  46. A. S. Krausz and K. Krausz: A fracture kinetics representation of fatigue crack propagation rate, in Proc. of the 2nd International Conference on Fatigue and Fatigue Thresholds (C. H. Beevers, J. Bachlund, P. Lukas, J. Schijve, and R. O. Ritchie, eds.) (1984), pp. 497–510.

    Google Scholar 

  47. N. E. Frost, K. J. Marsh and L. P. Pook: Metal Fatigue, Clarendon Press (1974).

    Google Scholar 

  48. S. T. Rolfe and J. M. Barsom: Fracture and Fatigue Control in Structures, Prentice-Hall (1977).

    Google Scholar 

  49. M. Klesnil and P. Lukas:Fatigue of Metallic Materials, Elsevier Scientific Publishing Co. (1980).

    Google Scholar 

  50. H. O. Fuchs and R. I. Stephens: Metal Fatigue in Engineering, John Wiley and Sons (1980).

    Google Scholar 

  51. T. V. Duggan and J. Byrne: Fatigue as a Design Criterion, The Macmillan Press Ltd. (1979).

    Google Scholar 

  52. C. Osgood: Fatigue Design, Pergamon Press (1982).

    Google Scholar 

  53. R. P. Skelton (ed.): Fatigue at High Temperature, Applied Science Publishers (1983).

    Google Scholar 

  54. R. D. Carter, E. W. Lee, E. A. Starke, Jr. and C. J. Beevers: The effect of microstructure and environment on fatigue crack closure of 7475 aluminum alloy, Metal Trans. 15A (1984), pp. 555–563.

    CAS  Google Scholar 

  55. M. O. Speidel: Corrosion Fatigue in Fe-Ni-Cr Alloys, in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, NACE-5, National Association of Corrosion Engineers (1977), pp. 1071–1094.

    Google Scholar 

  56. O. Vosikovsky: Fatigue-crack growth in an X-65 line-pipe steel at low frequencies in aqueous environments, Closed Loop, The Magazine of Mechanical Testing, MTS Systems Corp., Vol. 6, No. 1 (1976), pp. 3–12.

    Google Scholar 

  57. W. W. Gerberich and K. A. Peterson: Micro and macro mechanics aspects of time-dependent crack growth, in Micro and Macro Mechanics of Crack Growth (K. Sadananda, B. B. Rath and D. J. Michel, eds.), The Metallurgical Society of AIME (1982), pp. 1–17.

    Google Scholar 

  58. W. W. Gerberich and N. R. Moody: A review of fatigue fracture topology effects on threshold and growth mechanisms, in Fatigue Mechanisms (J. T. Fong, ed.), ASTM STP 675, American Society for Testing and Materials (1979), pp. 292–341.

    Google Scholar 

  59. Y. Hirose and K. Tanaka: Nucleation and growth of stress-corrosion cracks in notched plates of high strength steels, in Mechanical Behavior of Materials ICM3, 2 (K. J. Miller and R. T. Smith, eds.), Pergamon Press (1979), pp. 409–419.

    Google Scholar 

  60. J. E. Campbell, W. W. Gerberich and J. H. Underwood: Application of Fracture Mechanics for Selection of Metallic Structural Materials, American Society for Metals (1982).

    Google Scholar 

  61. J. A. Collins: Failure of Materials in Mechanical Design, John Wiley and Sons (1981).

    Google Scholar 

  62. V. J. Colangelo and F. A. Heiser: Analysis of Metallurgical Failures, John Wiley and Sons (1974).

    Google Scholar 

  63. R. J. Charles: Stress rupture evaluations of high temperature structural materials, in Fracture Mechanics of Ceramics, Vol. 4 (R. C. Bradt, D. P. H. Hasselman and F. F. Lange, eds.), Plenum Press (1978), pp. 623–638.

    Google Scholar 

  64. K. Krausz, A. S. Krausz: The kinetics of time dependent plastic flow and fracture in ceramic materials, in Deformation of Ceramic Materials (R. E. Tressler and R. C. Bradt, eds.), Plenum Press (1984), pp. 547–554.

    Google Scholar 

  65. B. R. Lawn: An atomistic model of kinetic crack growth in brittle solids, J. Mater. Sci. 10, pp. 469–480.

    Google Scholar 

  66. A. S. Krausz and J. Mshana: Steady-state fracture kinetics of crack front spreading, Int. J. Fract. 19 (1982), pp. 227–293.

    Google Scholar 

  67. B. Faucher and A. S. Krausz: Properties of consecutive energy barriers and the associated behavior in plastic flow, J. Appl. Phys. 49 (1978), pp. 3774–3778.

    Google Scholar 

  68. A. S. Krausz: The deformation kinetics of consecutive energy barriers, J. Phys. Chem. Solids 40(1979), pp. 351–356.

    CAS  Google Scholar 

  69. A. S. Krausz and B. Faucher: The steady-state kinetics of double-kink spreading, Scripta Met. 13 (1979), pp. 91–94.

    Google Scholar 

  70. A. S. Krausz and B. Faucher: The reaction kinetics for a system of consecutive energy barriers in plastic flow, Advances in Molecular Relaxation and Interaction Processes 18 (1980), pp. 11–20.

    Google Scholar 

  71. J. P. Hirth and J. Lothe:Theory of Dislocations, McGraw-Hill (1968).

    Google Scholar 

  72. I.-H. Lin and J. P. Hirth: On brittle crack advance by double-kink nucleation, J. Mater. Sci. 17(1982), pp. 447–460.

    CAS  Google Scholar 

  73. R. Thomson, C. Hsieh and V. Rana: Lattice trapping of fracture cracks, J. Appl. Phys. 42 (1971), pp. 3154–3160.

    CAS  Google Scholar 

  74. C. Hsieh and R. Thomson: Lattice theory of fracture and crack creep, J. Appl. Phys. 44 (1973), pp. 2051–2063.

    Google Scholar 

  75. K. Krausz, A. S. Krausz and S.-S. Necsulescu: The effects of the internal stress field and the structure of crystalline materials on crack propagation velocity, Int. J. Fract. 23 (1983), pp. 155–159.

    Google Scholar 

  76. K. Krausz and A. S. Krausz: Stress corrosion life expectancy topographs for the determination of design and inspection data, in Time-dependent Fracture, Proc. of the 11th Canad. Fracture Conf. (A. S. Krausz, ed.), Martinus Nijhoff Publishers (1985), pp. 131–145.

    Google Scholar 

  77. S. N. Zhurkov: Kinetic concept of the strength of solids, Int. J. Fract. Mech. 1 (1965), pp. 311–323.

    CAS  Google Scholar 

  78. C. C Hsiao: Fracture, Phys. Today 19 (1966), pp. 49–53.

    Google Scholar 

  79. F. P. Ford: Current understanding of the mechanism of stress corrosion and corrosion fatigue, in Environment Sensitive Fracture (S. W. Dean, E. N. Pugh and G. M. Vgiansky, eds.), ASTM STP 821, American Society for Testing and Materials (1984), pp. 32–51.

    Google Scholar 

  80. E. R. Fuller and R. M. Thomson: Lattice theories of fracture, in Fracture Mechanics of Ceramics, Vol. 4 (R. C. Bradt, D. P. H. Hasselman and F. F. Lange, eds.), Plenum (1983), pp. 507–548.

    Google Scholar 

  81. M. F. Kanninen and C. H. Popelar: Advanced Fracture Mechanics, Oxford Press (1985).

    Google Scholar 

  82. R. W. Hertzberg and J. A. Manson: Fatigue of Engineering Plastics, Academic Press (1980).

    Google Scholar 

  83. A. S. Argon: Thermally activated crack growth in brittle solids, Scripta Met. 16 (1982), pp. 259–264.

    CAS  Google Scholar 

  84. A. S. Krausz and K. Krausz: Time dependent failure of ceramic materials in sustained and fatigue loading, Fracture Mechanics of Ceramics (R. C. Bratt, A. G. Evans, D. P. H. Hasselman and F. F. Lange, eds.) 8 (1986), pp. 330–340.

    Google Scholar 

  85. K. Krausz and A. S. Krausz: Fracture kinetics of corrosion fatigue, Third International Conference on Fatigue and Fatigue Thresholds, University of Virginia, Charlottesville, VA, U.S.A. June 28-July 3 (1987).

    Google Scholar 

  86. A. S. Krausz and K. Krausz: The fracture kinetics of subcritical environment assisted fatigue crack propagation processes, ASTM 20th National Symposium on Fracture Mechanics: Perspectives and Directions, Lehigh University, Bethlehem, PA, U.S.A. June 23–25 (1987).

    Google Scholar 

  87. T. Ungsuwarungsri and W. G. Knauss: The role of damage-softened material behaviour in the fracture of composites and adhesives, Int. J. Fract. 35 (1987), pp. 221–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Krausz, A.S., Krausz, K. (1988). Deterministic fracture kinetics theory and constitutive laws. In: Fracture Kinetics of Crack Growth. Mechanical Behavior of Materials, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1381-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1381-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7116-1

  • Online ISBN: 978-94-009-1381-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics