Skip to main content

Solubility and Transport of Platinum-Group Elements in Hydrothermal Solutions: Thermodynamic and Physical Chemical Constraints

  • Chapter
Geo-Platinum 87

Abstract

Thermodynamic calculations and physical chemical considerations suggest that at least some of the platinum-group elements (PGE) may be mobile in geological fluids such as chloride, hydroxide, bisulphide, polysulphide, thiosulphate or ammonia complexes, depending on pH, fO2, temperature and lignad concentration.

In saline fluids (i. e. ΣCl- > 1·0 m) at 25°C, Pt and Pd are soluble as \(PtCl^{2-}_4\) and \(PdCl^{2-}_4\), at a level of 10 ppb or greater, only in very acidic and oxidizing fluids. The complexes \(OsCl^{3-}_6\), \(IrCl^{3-}_6\), \(RuCl^{2-}_5\) and \(RhCl^{2-}_5\) and their hydration and hydrolysis products may also be responsible for solubilities of the order of l0 ppb under more restricted conditions. The thermodynamically predicted order of solubility as chlorides at 25°C is Pd > Pt > Os > Ir, Au. It was possible to extrapolate the data for Pt and Pd chloride complexes to 300°C where significant Pt and Pd solubility are attained only in highly acidic and oxidizing solutions.

Under mildly oxidizing, near neutral to basic conditions, hydroxy species such as \(Pt(\!OH\!)^{2-}_4\) or \(Pd(\!OH\!)^{2-}_4\) appear to give solubilities as high as 10 ppb. For the other PGE, oxyanionic species such as \(OsO^{2-}_4\) and \(RuO^{2-}_4\) can become important in very basic and oxidizing solutions. At low temperatures, thiosulphate and polysulphide species may be important. For example, at 25°C and ΣS = 0·1 m, 10 ppb of Pt and Pd can be attained as \(Pt(S_2O_3)^{6-}_4\) and \(Pd(S_2O_3)^{6-}_4\) at near neutral to basic pH near the \( HS^-\!/S_{2}O^{2-}_3\) boundary. Although no stability constant data are available, it is expected that the soft (in the Pearson sense) PGE metal ions would form strong complexes with HS-. It was possible to estimate the stability constants of \(Pt(\!HS\!)^{2-}_4\) and \(Pd(\!HS\!)^{2-}_4\) at 300° C. These result in calculated solubilities of 1–10 ppt (parts per trillion) in the region near the pyrite—pyrrhotite—magnetite triple point. Higher solubilities may be expected if additional bisulphide species or mixed bisulphidehydroxide species exist. Preliminary experimental data suggest that this is the case.

Ammonia may also be effective in mobilizing the PGE, however, only under near neutral to basic, oxidizing conditions. The hydroxide complexes may dominate over the ammonia complexes in this region. The effect of As, Se and Te appears to be to decrease the solubility of the PGE although the possibility of complexing by ligands containing these elements cannot be completely ignored.

Calculations also indicate that at temperatures greater than 1200K, 10 ppt Pd and 0·1 ppt Ru may be transported as volatile halide species in an aqueous vapour phase at log f hcl = 100 bars and log fO2 of the quart—fayalite—magnetite buffer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baes, C. F. Jr & Mesmer. R. E. (1976). The Hydrolysis of Cations. John Wiley, New York, 489 pp.

    Google Scholar 

  • Ballhaus, C. G. & Stumpfl, E. F. (1985a). Graphite, platinum and the C-O-H-S system. In. Fourth International Platinum Symposium, Toronto, Abstracts; Can. Min., 23, 293–4.

    Google Scholar 

  • Ballhaus, C. G. & Stumpfl, E. F. (1985b). Fluid inclusions in Merensky and Bastard Reefs, Western Bushveld Complex. In Fourth International Platinum Symposium, Toronto, Abstracts; Can. Min., 23, 294.

    Google Scholar 

  • Barin, I., Knacke, O. & Kubaschewski, O. (1975). Thermochemical Properties of Inorganic Substances. Springer, New York, 921 pp.

    Google Scholar 

  • Barin, I., Knacke, O. & Kubaschewski, O. (1977). Thermochemical Properties of Inorganic Substances-Supplement. Springer, New York, 861 pp.

    Google Scholar 

  • Barner, H. E. & Scheuerman, R. V. (1978). Handbook of Thermochemical Data for Compounds and Aqueous Species. John Wiley, New York, 156 pp.

    Google Scholar 

  • Barnes, H. L. (1979). Solubilities of ore minerals. In Geochemistry of Hydrothermal Ore Deposits, ed. H. L. Barnes. Wiley, New York, pp. 404–60.

    Google Scholar 

  • Belevantsev, V. I., Kolonin, G. R. & Peshchevitskiy, B. I. (1982). Use of stepwise ligand replacement in estimating the stability constants of mixed complexes in geochemically important systems. Geochem. Int., 19, 169–79.

    Google Scholar 

  • Boudreau, A. E. & McCallum, I. S. (1985). Evidence for mineral reactions and metasomatism by silica-undersaturated Cl-rich fluids in the main Pt-Pd zone, Stillwater Complex, Montana. In Fourth International Platinum Symposium, Toronto; Abstracts, Can. Min., 23, 293–4.

    Google Scholar 

  • Boudreau, A. E. & McCallum, I. S. (1986). Investigations of the Stillwater Complex: III. The Picket Pin Pt/Pd deposit. Econ. Geol., 81, 1953–75.

    Article  Google Scholar 

  • Boudreau, A. E., Mathez, E. A. & McCallum, I. S. (1986a). The role of Cl-rich fluids in the Stillwater Complex. GAC-MAC Prog., with Abstr., 11, 47.

    Google Scholar 

  • Boudreau, A. E., Mathez, E. A. & McCallum, I. S. (1986b). Halogen geochemistry of the Stillwater and Bushveld Complexes: Evidence for transport of the platinum-group elements by Cl-rich fluids. J. Petrol., 27, 967–86.

    Google Scholar 

  • Bowles, J. F. W. (1986). The development of platinum-group minerals in laterites. Econ. Geol., 81, 1278–85.

    Article  Google Scholar 

  • Brown, J. B. (1971). Jarosite-goethite stabilities at 25°C, 1 atm. Mineral. Dep., 6, 245–52.

    Google Scholar 

  • Cabri, L. J. (1981). The platinum-group minerals. In Platinum-Group Elements: Mineralogy, Geology, Recovery, ed. L. J. Cabri. CIM Special Volume 23, pp. 83–150.

    Google Scholar 

  • Chang, J. C. & Garner, C. S. (1965). Kinetics of aquation of aquopentachloroiridate (III) and chloride anation of diaquotetrachloroiridate (III) anions. Inorg. Chem., 4, 209–15.

    Article  Google Scholar 

  • Cousins, C. A. (1973). Notes on the geochemistry of the platinum group elements. Geol. Soc. South Africa Trans., 76, 77–81.

    Google Scholar 

  • Cozzi, D. & Pantani, F. (1958). The polarographic behavior of rhodium (III) chlorocomplexes. J. Inorg. Nucl. Chem., 8, 385–98.

    Article  Google Scholar 

  • Crerar, D. A. & Barnes, H. L. (1976). Ore solution chemistry V. Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200° to 350°C. Econ. Geol., 71, 772–94.

    Article  Google Scholar 

  • Crerar, D., Wood, S., Brantley, S. & Bocarsly, A. (1985). Chemical controls on solubility of ore-forming minerals in hydrothermal solutions. Can. Min., 23, 333–52.

    Google Scholar 

  • Dillon-Leitch, H. C. H., Watkinson, D. H. & Coats, C. J. A. (1986). Distribution of platinum-group elements in the Donaldson West Deposit, Cape Smith Belt, Quebec. Econ. Geol., 81, 1147–58.

    Article  Google Scholar 

  • Elding, L. I. (1972). Palladium(II) halide complexes, I. Stabilities and spectra of palladium (II) chloro and bromo aqua complexes. Inorg. Chim. Acta, 6, 647–51.

    Article  Google Scholar 

  • Elding, L. I. (1978). Stabilities of platinum(II) chloro and bromo complexes and kinetics for anation of the tetraaquaplatinum(II) ion by halides and thiocyanate. Inorg. Chim. Acta, 28, 255–62.

    Article  Google Scholar 

  • Fuchs, W. A. & Rose, A. W. (1974). The geochemical behavior of platinum and palladium in the weathering cycle in the Stillwater Complex, Montana. Econ. Geol., 69, 332–46.

    Article  Google Scholar 

  • Giggenbach, W. (1974). Equilibria involving polysulfide ions in aqueous solutions up to 240°C. Inorg. Chem., 13, 1724–30.

    Article  Google Scholar 

  • Goldhaber, M. B. (1983). Experimental study of metastable sulphur oxyanion formation during pyrite oxidation at pH 6–9 and 30°C. Am. J.Sci., 283, 193–217.

    Article  Google Scholar 

  • Hancock, R. D. & Evers, A. (1976). Formation constant of Pd(CN)4 2- Inorg. Chem., 15, 995–6.

    Article  Google Scholar 

  • Hancock, R. D., Finkelstein, N. P. & Evers, A. (1977). A linear free-energy relation involving the formation constants of palladium(II) and platinum(II). J. Inorg. Nucl. Chem., 39, 1031–4.

    Article  Google Scholar 

  • Hartley, F. R. (1973). The Chemistry of Platinum and Palladium. John Wiley, New York, 544 pp.

    Google Scholar 

  • Helgeson, H. C. (1969). Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci., 267, 729–804.

    Article  Google Scholar 

  • Högfeldt, E. (1982). Stability constants of metal-ion complexes, Part A: Inorganic Ligands, IUPAC Chemical Data Series, No. 21: Pergamon Press, New York, 310 pp.

    Google Scholar 

  • Huebner, J. S. (1971). Buffering techniques for hydrostatic systems at elevated pressures. In Research Techniques for High Pressure and High Temperature, ed. J. C. Ulmer. Springer, New York, pp. 123–78.

    Google Scholar 

  • Kubaschewski, O. & Alcock, C. B. (1979). Metallurgical Thermochemistry. Pergamon Press, New York, 449 pp.

    Google Scholar 

  • Livingstone, S. E. (1965). Metal complexes of ligands containing sulphur, selenium or tellurium as donor atoms. Quart. Rev. (London., 19, 386–425.

    Article  Google Scholar 

  • Livingstone, S. E. (1973). The second- and third-row elements of group VIIIA, B and C. In Comprehensive Inorganic Chemistry, Vol. 3, ed. J. C. Bailar Jr, H. J. Emeleus, R. Nyholm & A. F. Trotman-Dickenson. Pergamon Press, New York, pp. 1163–370.

    Google Scholar 

  • Llopis, J. F. & Colom, F. (1976a). Platinum. In Encyclopedia of Electrochemistry of the Elements, Vol. VI, ed. A. J. Bard. Marcel Dekker, New York, pp. 169–219.

    Google Scholar 

  • Llopis, J. F. & Colom, F. (1976b). Iridium. In Encyclopedia of Electrochemistry of the Elements, Vol. VI, ed. A. J. Bard. Marcel Dekker, New York, pp. 221–34.

    Google Scholar 

  • Llopis, J. F. & Colom, F. (1976c). Osmium. In Encyclopedia of Electrochemistry of the Elements, Vol. VI, ed. A. J. Bard. Marcel Dekker, New York, pp. 235–51.

    Google Scholar 

  • Llopis, J. F. & Colom, F. (1976d). Palladium. In Encyclopedia of Electrochemistry of the Elements, Vol. VI, ed. A. J. Bard. Marcel Dekker, New York, pp. 253–75.

    Google Scholar 

  • Llopis, J. F. & Tordesillas, I. M. (1976). Ruthenium. In Encyclopedia of Electrochemistry of the Elements, Vol. VI, ed. A. J. Bard. Marcel Dekker, New York, pp. 277–98.

    Google Scholar 

  • McCallum, M. E., Loucks, R. R. Carlson, R. R., Cooley, E. F. & Doerge, T. A. (1976). Platinum metals associated with hydrothermal copper ores of the New Rambler Mine, Medicine Bow Mountains, Wyoming. Econ. Geol., 71, 1429–50.

    Article  Google Scholar 

  • Mestre, J. M., Montagut, X., Ruiz, M. & Victori, L. (1982). Calculo de las constantes de estabilidad de los clorocomplejos de Platino(II) en medio acuoso. Afinidad, 39, 484–9.

    Google Scholar 

  • Miano, R. R. & Garner, C. S. (1965). Kinetics of aquation of hexachloroosmate(IV) and chloride anation of aquopentachloroosmate(IV) anions. Inorg. Chem., 4, 337–42.

    Article  Google Scholar 

  • Mihalik, P., Jacobsen, J. B. E. & Hiemstra, S. A. (1974). Platinum-group minerals from a hydrothermal environment. Econ. Geol., 69, 257–62.

    Article  Google Scholar 

  • Mills, K. C. (1974). Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides. Butterworths, London, 845 pp.

    Google Scholar 

  • Mountain, B. W. & Wood, S. A. (1988). Chemical controls on the solubility, transport and deposition of platinum and palladium in hydrothermal solutions: A thermodynamic approach. Econ. Geol., 83.

    Google Scholar 

  • Murowchick, J. B. & Barnes, H. L. (1986). Marcasite precipitation from hydrothermal solutions. Geochim. Cosmochim. Acta, 50, 2615–29.

    Article  Google Scholar 

  • Murray, R. C., Jr & Cubicotti, D. (1983). Thermodynamics of aqueous sulfur species to 300°C and potential-pH diagrams. J. Electrochem. Soc., 130, 866–9.

    Article  Google Scholar 

  • Pearson, R. G. (1963). Hard and soft acids and bases. J. Am. Chem. Soc., 85, 3533–9.

    Article  Google Scholar 

  • Peshchevitskiy, B. I., Ptitsyn, B. V. & Leskova, N. M. (1962). Hydrolysis of the tetrachloroplatinate ion. Izvetsia Akademia Nauka, SSSR, Seria Khimia, 11, 143.

    Google Scholar 

  • Pittwell, L. R. (1965). Thiometallates of the group-eight metals. Nature, 207, 1181–2.

    Article  Google Scholar 

  • Poulsen, I. A. & Garner, C. S. (1962). A thermodynamic and kinetic study of hexachloro and aquopentachloro complexes of iridium(III) in aqueous solutions. J. Am. Chem. Soc., 84, 2032–7.

    Article  Google Scholar 

  • Razin, L. V. (1968). Problem of the origin of platinum metallization of forsterite dunite. Int. Geol. Rev., 13, 776–88.

    Article  Google Scholar 

  • Robie, R. A., Hemingway, B. S. & Fisher, J. R. (1978). Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull., 1452, 456pp.

    Google Scholar 

  • Rowell, W. F. & Edgar, A. D. (1986). Platinum-group element mineralization in a hydrothermal Cu-Ni sulfide occurrence, Rathbun Lake, Northeastern Ontario. Econ. Geol., 81, 1272–7.

    Article  Google Scholar 

  • Seward, T. M. (1973). Thiocomplexes of gold and the transport of gold in hydrothermal ore solutions. Geochim. Cosmochim. Acta, 37, 379–99.

    Article  Google Scholar 

  • Seward, T. M. (1984). The transport and deposition of gold in hydrothermal systems. In Gold ’82: The Geology, Geochemistry, and Genesis of Gold Deposits, ed. R. P. Foster. Geological Society of Zimbabwe Special Publication, Vol. 1, pp. 165–81.

    Google Scholar 

  • Sillen, L. G. & Martell, A. E. (1971). Stability of metal-ion complexes. Chemical Society of London, Special Publication No. 25, 865 pp.

    Google Scholar 

  • Smith, R. M. & Martell, A. E. (1976). Critical Stability Constants: Vol. 4: Inorganic Complexes. Plenum Press, New York, 257 pp.

    Google Scholar 

  • Sohnge, P. G. (1945). The geology of the Messina copper mines and surrounding country, Pretoria. Geological Survey of South Africa, Mem. 40, 282 pp.

    Google Scholar 

  • Stumpfl, E. F. (1974). The genesis of platinum deposits: further thoughts. Miner. Sci. Engng, 6, 120–41.

    Google Scholar 

  • Volborth, A. & Housley, R. M. (1984). A preliminary description of complex graphite, sulfide, arsenide, and platinum-group element mineralization in a pegmatoid pyroxenite of the Stillwater Complex, Montana, U.S.A. Tschermaks Mineral. Petrog. Mitt., 33, 213–30.

    Article  Google Scholar 

  • Wagner, P. A. (1929). Platinum Deposits and Mines of South Africa. C. Struik (Pty) Ltd, Capetown, South Africa, 338 pp.

    Google Scholar 

  • Watkinson, D. H., Dahl, R. & McGoran, J. (1986). The Coldwell Complex platinum-group- element deposit: 2. Relationships of platinum-group-elements to pegmatitic biotite- bearing gabbro and the role of a fluid phase. GAC-MAC Prog, with Abstr., 11, 142–3.

    Google Scholar 

  • Webster, J. G. (1986). The solubility of gold and silver in the system Au-Ag-S-O2-H2O at 25°C and 1 atm. Geochim. Cosmochim. Acta., 50, 1837–46.

    Article  Google Scholar 

  • Westland, A. D. (1981). Inorganic chemistry of the platinum-group elements. In Platinum Group Elements: Mineralogy, Geology, Recovery, ed. L. Cabri. Canadian Institute of Mining and Metallurgy Special Volume 23, pp. 7–18.

    Google Scholar 

  • Wolsey, W. C., Reynolds, C. A. & Kleinberg, J. (1965). Complexes in the rhodium (III)-chloride system in acid solution. Inorg. Chem., 2, 463–8.

    Article  Google Scholar 

  • Wood, S. A. (1987). Thermodynamic calculations of the volatility of the platinum-group elements (PGE) at magmatic temperatures. Geochim. Cosmochim. Acta, 51, 3041–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Mountain, B.W., Wood, S.A. (1988). Solubility and Transport of Platinum-Group Elements in Hydrothermal Solutions: Thermodynamic and Physical Chemical Constraints. In: Prichard, H.M., Potts, P.J., Bowles, J.F.W., Cribb, S.J. (eds) Geo-Platinum 87. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1353-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1353-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7102-4

  • Online ISBN: 978-94-009-1353-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics