Skip to main content

Stick-Slip and Peeling of Adhesive Tapes

  • Chapter
Adhesion 12

Abstract

The everyday experience shows that in a given range of temperatures and velocities, the peeling of an adhesive tape is jerky with emission of a characteristic noise. This phenomenon of self sustained oscillations (stick-slip) often described for peeling [1–10] is also observed in other fracture mechanics geometries such as tearing [11–13], wedge loaded double cantilever beams (DCB) [14–22], double torsion [23–29] and blister pressurized by incompressible liquid [30]. All these tests are characterized by the fact that the strain energy release rate G does not increase with the crack length, otherwise a single velocity jumps would occur [31]. The main experimental results are the following:

  1. 1/

    When the imposed cross-head velocity increases, stick-slip appears abruptly with a large amplitude (defined by the difference between Gi for crack initiation and Ga for crack arrest) at a given velocity (depending on temperature), and its amplitude decreases as the cross-head velocity is further increased, until stable propagation is observed anew [1,7,24,26,27]. Generally it is the peak value Gi which decreases, Ga remaining more or less constant or increasing slowly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gardon, J.L., Pell adhesion I. Some phenomenological aspects of the test. J. Appl. Polym. Sci., 1963, 7, 625–41.

    Article  CAS  Google Scholar 

  2. Kaelble, D.H. Theory and analysis of peel adhesion: rate-temperature dependence of viscoelastic interlayers. J. Colloid Sci., 1964, 19, 413–24.

    Article  Google Scholar 

  3. Aubrey, D.W., Welding, G.N. and Wong, T., Failure mechanisms in peeling of pressure-seensitive adhesive tape. J. Appl. Polym. Sci., 1969, 13, 2193–207.

    Article  CAS  Google Scholar 

  4. Gent, A.N. and Petrich, R.P., Adhesion of viscoelastic materials to rigid substrates. Proc. Roy. Soc., 1969, A310, 433–48.

    Google Scholar 

  5. Aubrey, D.W., Pressure-sensitive adhesives. Principles of formulation. In Developments in Adhesives - I, ed. W.C. Wake, Appl. Sci. Publ., London, 1977, pp. 127–56.

    Google Scholar 

  6. Aubrey, D.W., Viscoelastic basis of peel adhesion. In Adhesion 3, ed. K.W. Allen, Appl. Sci. Publ., London, 1978, pp. 191–205.

    Google Scholar 

  7. Aubrey, D.W. and Scherriff, M., Peel adhesion and viscoelasticity of rubber resin blends. J. Polym. Sci. Polym. Chem. Ed., 1980, 18, 2597–608.

    Article  CAS  Google Scholar 

  8. Satas, D., Peel. In Handbook of Pressure-sensitive adhesive technology, ed. D. Satas, Van Nostrand, New York, 1982, pp. 50–77.

    Google Scholar 

  9. Hamed, G.R. and Shieh, C.H., Relationship between the cohesive strength and the tack of elastomers. J. Polym. Sci. Polym. Phys. Ed., 1983, 21, 1415–25.

    Article  CAS  Google Scholar 

  10. Aubrey, D.W., Effect of adhesive composition on the peeling behaviour of adhesive tapes. In Adhesion 8, ed. K.W. Allen, Elsevier Appl. Sci. Publ., London, 1984, pp. 19–32.

    Google Scholar 

  11. Greensmith, H.W. and Thomas, A.G., Rupture of rubber III. Determination of tear properties. J. Polym. Sci., 1955, HS, 189–200.

    Article  CAS  Google Scholar 

  12. Veith, A.G., A new tear test for rubber. Rubber Chem. Technol., 1965, 38, 700–18.

    Article  Google Scholar 

  13. Stracer, R.G., Yanyo, L.C. and Kelley, F.N., Observations on the tearing of elastomers. Rubber Chem. Technol., 1985, 58, 421–35.

    Article  Google Scholar 

  14. Broutman, L.J. and Mc Garry, F.J., Fracture surface work measurements on glassy polymers by a cleavage technique. I. Effect of temperature. J. Appl. Polym. Sci., 1965, 9, 589–608.

    Article  CAS  Google Scholar 

  15. Clark, A.B.J. and Irwin, G.R., Crack propagation behaviors. Exp. Mech., 1966, 6, 321–30.

    Article  Google Scholar 

  16. Ripling, E.J., Mostovoy, S. and Corten, H.T., Fracture mechanics: a tool for evaluating structural adhesives. J. Adhesion, 1971, 3, 107–23.

    Article  CAS  Google Scholar 

  17. Broutman, L.J. and Kobayashi, T., Dynamic crack propagation studies. In Dynamic crack propagation, ed. G.C. Sih, Noordhoff, Leyden, 1973 pp. 215–25.

    Google Scholar 

  18. Rosenfield, A.R. and Kanninen, M.F., The fracture mechanics of glassy polymers. J. Macromol. Sci. Phys., 1973, B7, 609–31.

    Google Scholar 

  19. Selby, K. and Miller, L.E., Fracture toughness and mechanical behaviour of an epoxy resin. J. Mater. Sci., 1975, 10, 12–24.

    Article  CAS  Google Scholar 

  20. Mostovoy, S., Crosley, P.B. and Ripling, E.J., Note on the dependence of crack velocity on driving force for an epoxy resin. In Cracks and fracture, ASTM STP 601, Philadephia, 1976, pp. 234–44.

    Chapter  Google Scholar 

  21. Fourney, W.L. and Kobayashi, T., Influence of loading system on crack propagation and arrest behavior in a double-cantilever beam specimen. In Fracture mechanics applied to brittle materials, ASTM STP 678, Philadelphia, 1979, pp. 47–59.

    Chapter  Google Scholar 

  22. Takahashi, K. and Mada, T., Ultrasonic fractography studies on discontinuous fracture propagation in polymers. Jap. J. Appl. Phys., 1985, 24, 196–8.

    Article  Google Scholar 

  23. Young, R.J. and Beaumont, P.W.R., Crack propagation and arrest in epoxy resins. J. Mater. Sci., 1976, 11, 776–9.

    Article  CAS  Google Scholar 

  24. Yamini, S. and Young, R.J., Stability of crack propagation in epoxy resins. Polymer, 1977, 18, 1075–80.

    Article  CAS  Google Scholar 

  25. Phillips, D.C., Scott, J.M. and Jones, M., Crack propagation in an aminecured epoxide resin. J. Mater. Sci., 1978, 13, 311–22.

    Article  CAS  Google Scholar 

  26. Gledhill, R.A., Kinloch, A.J., Yamini, S. and Young, R.J., Relationship between mechanical properties of and crack propagation in epoxy resin adhesives. Polymer, 1978, 19, 574–82.

    Article  CAS  Google Scholar 

  27. Yamini, S. and Young, R.J., Crack propagation in and fractography of epoxy resins. J. Mater. Sci., 1979, 14, 1609–18.

    Article  CAS  Google Scholar 

  28. Yamini, S. and Young, R.J., The mechanical properties of epoxy resins. Part 2. Effect of plastic deformation upon crack propagation. J. Mater. Sci., 1980, 15, 1823–31.

    Article  CAS  Google Scholar 

  29. Spanoudakis, J. and Young, R.J., Crack propagation in a glass particle-filled epoxy resin. Part 1. Effect of particle volume fraction and size. J. Mater. Sci., 1980, 19, 473–86.

    Article  Google Scholar 

  30. Dannenberg, H., Measurement of adhesion by a blister method. J. Appl. Polym. Sci., 1961, 5, 125–34.

    Article  CAS  Google Scholar 

  31. Maugis, D., Subcritical crack-growth, surface energy, fracture toughness, stick-slip and embrittlement. J. Mater. Sci., 1985, 20, 3041–73.

    Article  CAS  Google Scholar 

  32. Williams, J.G., Radon, J.C. and Turner, C.E., Designing against fracture in brittle plastics. Polym. Eng. Sci., 1968, 4, 130–41.

    Article  Google Scholar 

  33. Maugis, D., Adherence of solids. In Microsçopic aspects of adhesion and lubrication, ed. 3.M. Georges, Elsevier, Amsterdam, 1982, pp. 221–52.

    Google Scholar 

  34. Williams, J.G., Fracture mechanics of polymers. Ellis Horwood, 1984.

    Google Scholar 

  35. Barquins, M., Khandani, B. and Maugis, D., Propagation saccadée de fissure dans le pelage d’un solide viscoelastique. Comptes Rend. Ac. Sci. Paris, série II, 1986, 303, 1517–19.

    Google Scholar 

  36. Maugis, D., Propagation saccadée de fissure en pelage, rôle de l’inertie. Comptes Rend. Ac. Sci. Paris, (in press).

    Google Scholar 

  37. Kobayashi, T. and Dally, J.W., Relation between crack velocity and the stress intensity factor in biréfringent polymers. In Fast fracture and crack arrest, ASTM STP 627, Philadelphia, 1977, pp. 257–73.

    Chapter  Google Scholar 

  38. Kobayashi, T. and Dally, J.W., A system of modified epoxies for dynamic photoelastic studies. Exper. Mech., 1977, 17, 367–74.

    Article  Google Scholar 

  39. Minorsky, N., Non-linear oscillations, Van Nostrand, New York, 1962.

    Google Scholar 

  40. Jordan, D.W. and Smith, P., Non linear ordinary differential equations. Clarendon Press, Oxford, 1977.

    Google Scholar 

  41. Dally, J.W., Fourney, W.L. and Irwin, G.R., On the uniqueness of the stress intensity factor-crack velocity relationship. Int. J. Fracture. 1985, 27, 159–68.

    Article  Google Scholar 

  42. Kobayashi, A.S., Ramulu, M., Dadkhah, M.S., Yang, K.H. and Kang, B.S.G., Dynamic fracture toughness. Int. J. Fracture, 1986, 30, 275–285.

    Article  Google Scholar 

  43. Bergé, P., Pomeau, Y. and Vidal, Ch., L’ordre dans le chaos. Hermann, Paris, 1984.

    Google Scholar 

  44. Guckenheimer, J. and Holmes, P., Non linear oscillations, dynamical systems and bifurcations of vector fields. Springer Verlag, New York, 2nd printing, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Elsevier Applied Science Publishers Ltd

About this chapter

Cite this chapter

Maugis, D., Barquins, M. (1988). Stick-Slip and Peeling of Adhesive Tapes. In: Allen, K.W. (eds) Adhesion 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1349-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1349-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7100-0

  • Online ISBN: 978-94-009-1349-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics