Skip to main content

Identification of Oxide and Sulphide Corrosion Products Using Raman Microscopy

  • Chapter
High Temperature Alloys

Abstract

Over the past few years Raman spectroscopy has been increasingly used to characterise oxide catalysts supported on alumina, silica and titania (1–3). This has been further extended to investigate oxides produced as corrosion products on metals and alloys (4–7). Farrow and Nagelberg (4,5) have characterised a number of high temperature corrosion products formed on stainless steels finding evidence of spinel phases along with oxides of both chrcmium and iron. Tjong (6) has studied corrosion products formed at high temperatures on a range of Fe/Cr alloys of Cr content 3, 9, 12 and 18 wt% and observed different products forming on the surface as a function of time, temperature and alloy composition. Fabis et al. (7) have demonstrated the feasability of making in-situ measurements using Raman techniques, and have investigated iron, chrcmium and stainless steels in air. This work has been extended (8) to include sulphidising atmospheres using 10% H2S/N2, gas mixture. Iron sulphide, chromium sulphide and mixed sulphide phases were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.R. Brown, L.E. Makovski and K.H. Rhee, J. Catal., 50, 162 (1977).

    Article  CAS  Google Scholar 

  2. F.R. Brown, L.E. Makovski and K.H. Rhee, J. Catal., 50, 385 (1977).

    Article  CAS  Google Scholar 

  3. S.S. Chan, I.E. Wachs, L.L. Mirrell, L. Wang and W.K. Hall, J. phys. Chem, 88, 5831 (1984).

    Article  CAS  Google Scholar 

  4. R.L. Farrow and A.S. Negelberg, Appl. Phys. Lett., 36, 945 (1980).

    Article  CAS  Google Scholar 

  5. R.L. Farrow, P.L. Matterm and A.S. Nagelberg, Appl. Phys. Lett., 36, 212 (1980).

    Article  CAS  Google Scholar 

  6. S.C. Tjang, Mater. Res. Bull., 18, 157 (1983)

    Article  Google Scholar 

  7. P.M. Fabis, R.H. Heidersbach, C.W. Brown and T. Rookett, COrr., 37, 700 (1981)

    Article  CAS  Google Scholar 

  8. P.M. Fabis, C.W. Brown And T Rockett, J. Mater. Energy Syst. 3, 66 (1981).

    Article  CAS  Google Scholar 

  9. R. Le Ny, C. Fiaud and A.T. Nguyen, J. Phys. Colloq., C2, 661 (1984).

    Google Scholar 

  10. H. Jeziorwski and B. Maser, Mikrochim. Acta, 2, (1984).

    Google Scholar 

  11. K.N. Strafford, Institut. Metall. Conf., Isle cf Man 1, 5/1 (1980).

    Google Scholar 

  12. I.R. Baattie and T.R. Gilscn, J. Chem. Soc.(A), 2322 (1969).

    Google Scholar 

  13. M. Py, P.E. Schnid and J.T. Vallin, Il Nuovo Cimento, 38B, 271 (1978).

    Google Scholar 

  14. R. Srivastava and L.L. Chase, Solid State Oratun., 11, 349 (1972).

    Article  CAS  Google Scholar 

  15. O.P. Agnihotri., H.K. Sehgal and A.K. Garg, Solid state Comun., 12, 135 (1973).

    Article  CAS  Google Scholar 

  16. C.H. Chang and S.S. Chan, J. Catal., 72, 139 (1981).

    Article  CAS  Google Scholar 

  17. S.P.S. Porbo, P.A. Fleury and T.C. Damen, Phys. Rev., 154, 522 (1967).

    Article  Google Scholar 

  18. W.T. Pawlewics, G.J. Exarhos and W.E. Conaway, Appl. Opt., 22, 1837 (1983).

    Article  Google Scholar 

  19. J.E. Smith, M.I. Nathan, M.W. Shafer and T.B. Torranoe, Proc. Int. Conf. Phys. Semioond. Polish Scientific, Warsaw, p1306 (1972)

    Google Scholar 

  20. U. Baladandran and N.G. Eror, J. Mater. Sci. Lett., 1, 219 (1982).

    Article  Google Scholar 

  21. V.G. Karamidas and W.B. White, J. Am. Ceram. Soc.,57, 22 (1974).

    Article  Google Scholar 

  22. T. Iwasaki, N. Kuroda and Y. Nishina, J. Phys. Soc. Jap., 51, 2233 (1982).

    Article  CAS  Google Scholar 

  23. S. Jandl, C.D. Cavelin and J.Y. Harvec, Solid State Comum., 31, 351 (1979).

    Article  CAS  Google Scholar 

  24. A. Zwick, M.A. Ranuoci, R. Charles, N. Saint_Cricq, and J.B. Renioci, Physica B, 105, 361 (1981).

    Article  CAS  Google Scholar 

  25. L. Soto and F. Adar, Mikrobeem Anal., 121 (1984)

    Google Scholar 

  26. C.D. Cavellin and S. Jandl, Solid State Comun., 33, 813 (1980).

    Article  CAS  Google Scholar 

  27. A. Zwick, G. Landa, M.A. Renuci and R. Charles, Phys. Rev. B28, 5694 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Gardiner, D.J., Littleton, C.J. (1987). Identification of Oxide and Sulphide Corrosion Products Using Raman Microscopy. In: Marriott, J.B., Merz, M., Nihoul, J., Ward, J. (eds) High Temperature Alloys. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1347-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1347-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7099-7

  • Online ISBN: 978-94-009-1347-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics