Skip to main content

Intersymbol Interference

  • Chapter
Digital Communication

Abstract

Chapter 6 described pulse amplitude modulation (PAM), in which a sequence of continuous-time pulses are multiplied by a sequence of symbols and combined for transmission. The output of the channel is filtered and sampled by the receiver, and the received samples are applied to a slicer to yield the detected data symbols. Inter-symbol interference results from linear amplitude and phase dispersion in the channel that broadens the pulses and causes them to interfere with one another. The Nyquist criterion specifies a frequency-domain condition on the received pulses under which there is no intersymbol interference. Generally this or a similar condition is not satisfied unless we equalize the channel, meaning roughly that we filter to compensate for the channel dispersion. Unfortunately, any equalization of amplitude distortion also enhances or amplifies any noise introduced by the channel, called noise enhancement. There is therefore a tradeoff between accurately minimizing intersymbol interference and minimizing the noise at the slicer input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. E. Shannon, “Communication in the Presence of Noise,” Proc. IRE 37 pp. 10–21 (January, 1949).

    Article  MathSciNet  Google Scholar 

  2. J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, Wiley, New York (1965).

    Google Scholar 

  3. J. G. Proakis, Digital Communications, McGraw-Hill Book Co., New York (1983).

    Google Scholar 

  4. S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory, Prentice-Hall, Inc., Englewood Cliffs, NJ (1987).

    MATH  Google Scholar 

  5. G. D. Forney, Jr., “Maximum-Likelihood Sequence Estimation of Digital Sequences in the Presence of Intersymbol Interference,” IEEE Trans, on Information Theory IT-18 pp. 363–378 (May 1972).

    Article  MathSciNet  Google Scholar 

  6. K. Abend and B. D. Fritchman, “Statistical Detection for Communication Channels with Intersymbol Interference, ” Proc. IEEE 58 pp. 779–785 (May 1970).

    Article  Google Scholar 

  7. M. R. Aaron and D. W. Tufts, “Intersymbol Interference and Error Probability,” IEEE Trans, on Information Theory IT-12(Jan. 1966).

    Google Scholar 

  8. R. W. Lucky, “Automatic Equalization for Digital Communications,” BSTJ 44 pp. 547–588 (April 1965).

    MathSciNet  Google Scholar 

  9. R. W. Lucky, J. Salz, and E. J. Weldon, Jr., Principles of Data Communication, McGraw-Hill Book Co., New York (1968).

    Google Scholar 

  10. A. Gersho, “Adaptive Equalization of Highly Dispersive Channels for Data Transmission,” BSTJ 48 pp. 55–70(1969).

    MATH  Google Scholar 

  11. R. W. Lucky, “Signal Filtering with the Transversal Equalizer,”Proc. Seventh Annual Allerton Conference on Circuits and System Theory, p. 792 (Oct. 1969).

    Google Scholar 

  12. R. D. Gitlin and S. B. Weinstein, “Fractionally-Spaced Equalization: An Improved Digital Transversal Equalizer,” BSTJ 60(2)(February, 1981).

    Google Scholar 

  13. S. U. H. Qureshi and G. D. Forney, Jr., “Performance Properties of a T/2 Equalizer,” NTC77 Proceedings, ()

    Google Scholar 

  14. G. Ungerboeck, “Fractional Tap-Spacing and Consequences for Clock Recovery in Data Modems, ”IEEE Trans, on Communications, (August, 1976).

    Google Scholar 

  15. J. E. Mazo, “Optimum Timing Phase for an Infinite Equalizer,” BSTJ 54(l)(January, 1975).

    Google Scholar 

  16. S. U. H. Qureshi, “Adaptive Equalization,” pp. 640 in Advanced Digital Communications Systems and Signal Processing Techniques, ed. K. Feher, Prentice-Hall, Englewood Cliffs, N.J. (1987).

    Google Scholar 

  17. M. E. Austin, Decision-Feedback Equalization for Digital Communication Over Dispersive Channels, M.I.T. Lincoln Laboratory, Lexington, Mass (August 1967).

    Google Scholar 

  18. C. A. Belfiore and J. H. Park, “Decision Feedback Equalization,” Proceedings of the IEEE 67(8)(August, 1979).

    Google Scholar 

  19. D. G. Messerschmitt, “A Geometric Theory of Intersymbol Interference: Part I and II,” Bell Sys. Tech. J. 52(Nov. 1973).

    Google Scholar 

  20. D. G. Messerschmitt, “Design of a Finite Impulse Response for the Viterbi Algorithm and Decision Feedback Equalizer,” Proc. IEEE Int. Conf. on Communications, (June 1974).

    Google Scholar 

  21. R. Price, “Nonlinearly Feedback-Equalized PAM vs. Capacity for Noisy Filter Channels,” Proc. 1972 IEEE International Conf. Communications, pp. 22–12 (June 1972).

    Google Scholar 

  22. J. G. Proakis, “Advances in Equalization for Intersymbol Interference,” Advances in Communication Systems 4(1975).

    Google Scholar 

  23. G. D. Forney, Jr., “The Viterbi Algorithm,” Proceedings of the IEEE 61(3)(March, 1973).

    Google Scholar 

  24. J. G. Proakis, “Adaptive Nonlinear Filtering Techniques for Data Transmission,”IEEE Symposium on Adaptive Processes, Decision, and Control, p. XV.2.1 (1970).

    Google Scholar 

  25. A. Gersho and T. L. Lim, “Adaptive Cancellation of Intersymbol Interference for Data Transmission,” BSTJ 70 pp. 1997–2021 (November 1981).

    Google Scholar 

  26. D. D. Falconer and F. R. Magee, Jr., “Adaptive Channel Memory Truncation for maximum Likelihood Sequence Estimation,” Bell Sys. Tech. J. 52 p. 1541 (Nov. 1973).

    MATH  Google Scholar 

  27. W. U. Lee and F. S. Hill, “A Maximum-Likelihood Sequence Estimator with Decision Feedback Equalization,” IEEE Trans, on Communications COM-25(9) pp. 971–979 (September 1977).

    Google Scholar 

  28. K. Wesolowski, “An Efficient DFE & ML Suboptimum Receiver for Data Transmission Over Dispersive Channels Using Two-Dimensional Signal Constellations,” IEEE Trans, on Communications COM-35(3) pp. 336–339 (March 1987). Correspondence

    Article  Google Scholar 

  29. J. Salz, “Optimum Mean-Square Decision Feedback Equalization,” BSTJ 52 pp. 1341–1373 (October 1973).

    Google Scholar 

  30. I. S. Gradshtcyn and I. M. Ryzhik, “Table of Integrals, Series, and Products,” Academic Press, (1980).

    Google Scholar 

  31. L.A. Zadeh and C.A. Desoer, Linear System Theory: A State Space Approach, McGraw-Hill, New York (1963).

    MATH  Google Scholar 

  32. D. L. Duttweiler, J. E. Mazo, and D. G. Messerschmitt, “Error Propagation in Decision- Feedback Equalizer,”IEEE Trans, on Information Theory IT-20 pp. 490–497 (July 1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Lee, E.A., Messerschmitt, D.G. (1988). Intersymbol Interference. In: Digital Communication. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1303-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1303-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-89838-295-2

  • Online ISBN: 978-94-009-1303-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics