Skip to main content

Immunobiology of Sexually Transmitted Disease: Herpes Simplex Virus

  • Chapter
Immunology of Sexually Transmitted Diseases

Part of the book series: Immunology and Medicine ((IMME,volume 9))

  • 54 Accesses

Abstract

Herpes simplex is an enveloped DNA virus able to cause both acute and recurrent diseases in man. There are two types, namely HSV-1 and HSV-2, but the latter is most often associated with genital lesions. The frequency of isolation of HSV-2 from genital episodes varies between investigators and may range from over 90% to as low as 60% 1. It is evident, therefore, that HSV-1 is also a major aetiological agent in genital herpes infections and both types will be considered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nahmias, A. J., Dannenbarger, J., Wickliffe, C. and Muther, J. (1981). Clinical aspects of infection with herpes simplex virus 1 and 2. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.).The Human Herpesviruses. An Interdisciplininary Perspective, pp. 3–9. ( NY: Elsevier Press )

    Google Scholar 

  2. Rawls, W. E. and Campione-Piccardo, J. (1981). Epidemiology of herpes simplex type 1 and 2 infections. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.).The Human Herpesviruses. An Interdisciplinary Perspective, pp. 137–152. ( NY: Elsevier Press )

    Google Scholar 

  3. Baringer, J. R. (1981). Latency of herpes simplex and varicella zoster viruses in the nervous system. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.).The Human Herpesviruses. An Interdisciplinary Perspective, pp. 202–205. ( NY: Elsevier Press )

    Google Scholar 

  4. Wildy, P., Field, H. J. and Nash, A. A. (1982). Classical herpes latency revisited. In Mahy, B., Minson, A. C. and Darby, G. K. (eds.).Symposium 33, Society for General Microbiology, pp. 133–168. ( NY: Cambridge University Press )

    Google Scholar 

  5. Mims, C. A. (1964). Aspects of the pathogenesis of viral disease.Bacteriol. Rev,28, 30–71

    PubMed  CAS  Google Scholar 

  6. Morahan, P. S., Kern, E. R. and Glasgow, L. A. (1977). Immunomodulator-induced resistance against herpes simplex virus.Proc. Soc. Exp. Biol. Med,154, 615–20

    PubMed  CAS  Google Scholar 

  7. Morahan, P. S., Morse, S. S. and McGeorge, M. E. (1980). Macrophage extrinsic antiviral activity during herpes simplex virus infection.J. Gen. Virol,46, 291–300

    Article  PubMed  CAS  Google Scholar 

  8. Morahan, P. S. (1984). Interactions of herpesviruses with mononuclear phagocytes. In Rouse, B. T. and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infection, pp. 71–89. ( Florida: CRC Press )

    Google Scholar 

  9. Morahan, P. S., Connor, J. R. and Leary, K. R. (1985). Viruses and the versatile macrophage.Br. Med. Bull,41, 15–21

    PubMed  CAS  Google Scholar 

  10. Bianco, C. and Edelson, P. J. (1978). Plasma membrane expression of macrophage differentiation. In Lerner, R. A. (ed.).Molecular Basis of Cell-Cell Interaction (Birth Defects) vol.14( 2 ), pp. 119–124. ( New York: Alan R. Liss )

    Google Scholar 

  11. Rager-Zisman, B., Kunkel, M., Tanaka, Y. and Bloom, B. R. (1982). Role of macrophage oxidative metabolism in resistance to vesicular stomatitis virus.Infect. Immun,36, 1229–37

    PubMed  CAS  Google Scholar 

  12. Stohlman, S. A., Woodward, J. G. and Frelinger, J. A. (1982). Macrophage antiviral activity: extrinsic versus intrinsic activity.Infect. Immun,36, 672–7

    PubMed  CAS  Google Scholar 

  13. Hayashi, K., Kurata, T., Morishima, T. and Nassery, T. (1980). Analysis of the inhibitory effect of peritoneal macrophages on the spread of herpes simplex virus.Infect. Immun,28. 350 - 8

    PubMed  CAS  Google Scholar 

  14. Wildy, P., Gell, P. G. H., Rhodes, J. and Newton, A. (1982). Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?Infect. Immun,37, 40–5

    PubMed  CAS  Google Scholar 

  15. Johnson, R. T. (1965). The pathogenesis of herpes virus encephalitis II. A cellular basis for the development of resistance with age.J. Exp. Med,120, 359–74

    Article  Google Scholar 

  16. Lopez, C. (1984). Natural resistance mechanisms against herpes virus in health and disease. In Rouse, B. T. and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infections, pp. 45–70. ( Florida: CRC Press )

    Google Scholar 

  17. Lopez, C. and Dudas, G. (1979). Replication of herpes simplex virus type 1 in macrophages from resistant and susceptible mice.Infect. Immun,23, 432–7

    PubMed  CAS  Google Scholar 

  18. Armerding, D., Mayer, P., Scriba, M., Hren, A. and Rossiter, H. (1981). In-vivo modulation of macrophage functions by herpes simplex virus type 2 in resistant and sensitive inbred mouse strains.Immunobiology,160, 217 - 27

    PubMed  CAS  Google Scholar 

  19. Mintz, L., Drew, W. L., Hoo, R. and Finley, T. N. (1980). Age-dependent resistance of human alveolar macrophages to herpes simplex virus.Infect. Immun,28, 417–20

    PubMed  CAS  Google Scholar 

  20. Morse, S. S. and Morahan, P. S. (1981). Activated macrophages mediate interferon- independent inhibition of herpes simplex virus.Cell. Immunol,58, 72–84

    Article  PubMed  CAS  Google Scholar 

  21. Stevens, J. G. and Cook, M. L. (1971). Restriction of herpes simplex virus by macrophages. An analysis of the cell-virus interaction.J. Exp. Med,133, 19–38

    Article  PubMed  CAS  Google Scholar 

  22. Rinaldo, C. R., Jr., Richter, B. S., Black, P. H. and Hirsch, M. S. (1979). Persistent infection of human lymphoid and myeloid cell lines with herpes simplex virus.Infect. Immun,25, 521–5

    PubMed  Google Scholar 

  23. Frank, U., Schindling, B., Lindermann, J. and Falke, D. (1978). Multiplication of herpes simplex virus types 1 and 2 in macrophages of NMRI and C57/BL mice.Acta Virol,22, 193–202

    PubMed  CAS  Google Scholar 

  24. Daniels, C. A., Kleinerman, E. S. and Snyderman, R. (1978). Abortive and productive infections of human mononuclear phagocytes by type 1 herpes simplex virus.Am. J. Pathol,91, 119–29

    PubMed  CAS  Google Scholar 

  25. Johnson, R. B., Jr. (1978). Oxygen metabolism and the microbicidal activity of macrophages.Fed. Proc,37, 2759–64

    Google Scholar 

  26. Sethi, K. K. (1983). Contribution of macrophage arginase in the intrinsic restriction of herpes simplex virus replication in permissive macrophage cultures induced by gamma- interferon containing products of activated spleen cells.Immunobiology,165, 459–74

    PubMed  CAS  Google Scholar 

  27. Stohlman, S. A., Woodward, J. G. and Frelinger, J. A. (1982). Macrophage antiviral activity: extrinsic versus intrinsic activity.Infect. Immun,36, 672–7

    PubMed  CAS  Google Scholar 

  28. Linnavuori, K. and Hovi, T. (1983). Restricted replication of herpes simplex virus in human monocyte cultures: role of interferon. Virology,130, 1–9

    Article  PubMed  CAS  Google Scholar 

  29. Isaacs, A. and Lindenmann, J., (1956). Virus interference. I. The interferons.Proc. R. Soc. Lond. (Ser. B.),147, 258–67

    Article  Google Scholar 

  30. Zawatzky, R., Gresser, I., DeMaeyer, E. and Kirchner, H. (1982). The role of interferon in the resistance of C57BL/6 mice to various doses of herpes simplex virus type 1.J. Infect. Dis,146, 405–10

    Google Scholar 

  31. Gresser, I., Tovey, M. G., Maury, C. and Bandu, M.-T. (1976). Role of interferon in the pathogenesis of virus diseases in mice as demonstrated by the use of anti-interferon serum. II. Studies with herpes simplex virus, Maloney sarcoma, vesicular stomatitis, Newcastle disease and influenza viruses.J. Exp. Med,144, 1316–23

    Article  PubMed  CAS  Google Scholar 

  32. Hirt, H. M., Becker, H. and Kirchner, H. (1978). Induction of interferon production in mouse spleen cell cultures by Corynebacteriumparvum. Cell. Immunol.,38, 168–75

    CAS  Google Scholar 

  33. Barinskii, I. F., Popova, O. M., Konstantinova, I. V., Grebeniuk, V. N. and Kuznetsov, V. P. (1985). Indices of alpha-interferon and of lymphocyte natural killer activity in genital herpes and the effect on them of specific vaccination therapy and interferon therapy.Vopr. Virusol,30, 340–3

    PubMed  CAS  Google Scholar 

  34. Panet, A., Gloger, I. and Falk, H. (1985). Mechanisms of herpes simplex virus inhibition by interferon. In Kirchner, H. and Schellekens, H. (eds.).The Biology of the Interferon System 1984, pp. 325–331. (Elsevier Science Publishers)

    Google Scholar 

  35. Haller, O. and Wigzell, H. (1977). Suppression of natural killer cell activity with radioactive strontium: effector cells are marrow dependent.J. Immunol,118, 1503–6

    PubMed  CAS  Google Scholar 

  36. Lopez, C. (1978). Immunological nature of genetic resistance of mice to herpes simplex virus-type 1 infection. In de The, G., Henle, W. and Rapp, F. (eds.).Oncogenesis and Herpes Viruses, Vol.3, pp. 775–81. ( Lyon: WHO )

    Google Scholar 

  37. Schneweis, K. E., Olbrick, M., Saffig, V. and Scholz, R. (1982). Effects of genetic resistance against herpes simplex virus in vaginally infected mice.Med. Microbiol. Immunol,171, 161–9

    Article  PubMed  CAS  Google Scholar 

  38. Armerding, D., Simon, M. M., Hammerling, G. J. and Rossiter, H. (1981). Function, target cell preference and cell surface characteristics of herpes simplex virus type 2 induced non- antigen specific killer cells.Immunobiology,158, 347–68

    PubMed  CAS  Google Scholar 

  39. El-Daher, N. and Betts, R. F. (1985). New observations regarding killing of fibroblasts infected with herpes simplex virus: co-operation between elutable factor and peripheral mononuclear cells.J. Inf. Dis,152, 1197–205

    Article  CAS  Google Scholar 

  40. Rouse, B. T. and Lopez, C. (1984). Strategies for immune intervention against herpes simplex virus. In Rouse, B. T. and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infections, pp. 145–155. ( Florida: CRC Press )

    Google Scholar 

  41. Gidlund, M. Orn, A., Wigzell, H., Senik, A. and Gresser, I. (1978). Enhanced NK cell activity in mice injected with interferon and interferon inducers.Nature(Lond.),273, 759–61

    Article  CAS  Google Scholar 

  42. Djeu, J. Y., Heinbaugh, J. A., Holden, H. T. and Herberman, R. B. (1979). Augmentation of mouse natural killer cell activity by interferon inducers.J. Immunol,122, 175–81

    PubMed  CAS  Google Scholar 

  43. Ullberg, M. and Jondal, M. (1981). Recycling and target-binding capacity of human natural killer cells.J. Exp. Med, 153, 615–28

    Article  PubMed  CAS  Google Scholar 

  44. Kohl, S., Loo, L. S., Schmalstieg, F. S. and Anderson, D. C. (1986). The genetic deficiency of leukocyte surface glycoprotein Mac-1, LFA-1, p150, 95 in humans is associated with defective antibody dependent cellular cytotoxicity in vitro and defective protection against herpes-simplex virus infection in vivo.J. Immunol,137, 1688–94

    PubMed  CAS  Google Scholar 

  45. Borysiewicz, L. K., Graham, S. and Sissons, J. G. (1986). Human natural killer cell lysis of virus-infected cells. Relationship to expression of the transferrin receptor.Eur. J. Immunol,16, 405–11

    Article  PubMed  CAS  Google Scholar 

  46. Hall, M. J. and Katrak, K. (1986). The quest for a herpes simplex virus vaccine: background and recent developments.Vaccine,4, 138–50

    Article  PubMed  CAS  Google Scholar 

  47. Shore, S. L. and Feorino, P. M. (1981). Immunology of primary herpes virus infections in humans. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.).The Human Herpesviruses. An Interdisciplinary Perspective, pp. 267–288. ( NY: Elsevier Pres )

    Google Scholar 

  48. Norrild, B., Emmertsen, H., Krebs, H. J. and Pedersen, B. (1984). Antibody-dependent immune mechanisms and herpes simplex virus infections. In Rouse, B. T., and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infection, pp. 91–105. ( Florida: CRC Press )

    Google Scholar 

  49. Sundquist, V. A., Linde, A. and Wahren, B. (1984). Virus-specific immunoglobin G subclasses in herpes simplex and varicella-zoster virus infections.J. Clin. Microbiol,20, 94–8

    Google Scholar 

  50. Bernstein, D. I., Lovett, M. A. and Bryson, Y. J. (1984). Serological analysis of first-episode non-primary genital herpes simplex virus infection. Presence of type 2 antibody in acute serum samples.Am. J. Med,77, 1055–60

    Article  PubMed  CAS  Google Scholar 

  51. Devillechabrolle, A., Hugnes-Dorin, F., Fortier, B., Catalan, F. and Huraux, J. M. (1985). Prevelance of serum antibodies to herpes simplex virus types 1 and 2: application of an ELISA technique to 100 cases of anogenital herpes.Sex Transm. Dis,12, 40–3

    Article  PubMed  CAS  Google Scholar 

  52. Courtney, R. J. (1984). Virus-specific components of herpes simplex virus involved in the immune response. In Rouse, B. T. and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infection, pp. 33–44. ( Florida: CRC Press )

    Google Scholar 

  53. Balachandran, N., Bacchetti, S. and Rawls, W. E. (1982). Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2.Infect. Immun,37, 1132–7

    PubMed  CAS  Google Scholar 

  54. Roberts, P. L., Duncan, B. E., Raybould, T. J. G. and Watson, D. H. (1985). Purification of Herpes virus glycoproteins B and C using monoclonal antibodies and their ability to protect mice against lethal challenge - hybridoma generation, monoclonal antibody production and vaccine purification.J. Gen. Virol,66, 1073–85

    Article  PubMed  CAS  Google Scholar 

  55. Lee, F. K., Coleman, R. M., Pereira, L., Bailey, P. D., Tatsuno, M. and Nahmias, A. J. (1985). Detection of herpes simplex virus type 2-specific antibody with glycoprotein G.J. Clin. Microbiol,22, 641–4

    PubMed  CAS  Google Scholar 

  56. Eberle, R., Mou, S. W. and Zaia, J. A. (1984). Polypeptide specificity of the early antibody response following primary and recurrent genital herpes simplex virus type 2 infections.J. Gen. Virol,65, 1839–43

    Article  PubMed  CAS  Google Scholar 

  57. Eberle, R., Mou, S. W. and Zaia, J. A. (1985). The immune response to herpes simplex virus: comparison of the specificity and relative titres of serum antibodies directed against viral polypeptides following primary herpes simplex type 1 infections.J. Med. Virol,16, 147–62

    Article  PubMed  CAS  Google Scholar 

  58. Ashley, R., Benedetti, J. and Corey, L. (1985). Humoral immune response to HSV-1 and HSV-2 viral proteins in patients with primary genital herpes.J. Med. Virol,17, 153 - 66

    Article  PubMed  CAS  Google Scholar 

  59. Lum, L. G., Orcutt-Thordarson, N. and Seigneuret, M. C. (1985). Regulatory roles of human OKT4/ OKT8 subsets in polyclonal immunoglobulin production induced by herpes simplex type 1 virus.Immunobiology,169, 319–29

    PubMed  CAS  Google Scholar 

  60. McDermott, M. R., Smiley, J. R., Leslie, P., Brais, J., Rudzroga, H. E. and Bienenstock, J. (1984). Immunity in the female genital tract after intravaginal vaccination of mice with an attenuated strain of herpes simplex type 2.J. Virol,51, 747–53

    PubMed  CAS  Google Scholar 

  61. Merriman, H., Woods, S., Winter, C., Fahnlander, A. and Corey, L. (1984). Secretory IgA antibody in cervicovaginal secretions from women with genital infection due to herpes simplex virus.Inf. Dis,149, 505–10

    Article  CAS  Google Scholar 

  62. Lagace-Simard, J., Portnoy, J. D. and Wainberg, M. A. (1986). High levels of IgE in patients suffering from frequent recurrent herpes simplex lesions. J. Allergy Clin. Immunol.,77, 582 - 5

    Article  PubMed  CAS  Google Scholar 

  63. Pass, R. F., Whitley, R. J., Whelchel, J. D., Diethelm, A. G., Reynolds, D. W. and Alford, C. (1980). Identification of patients with increased risk of infection with herpes simplex virus after renal transplantation.J. Inf. Dis,140, 487–92

    Article  Google Scholar 

  64. Kohl, S. (1984). The immune response of the neonate to herpes simplex virus infection. In Rouse, B. T. and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infections, pp. 121–130. ( Florida: CRC Press )

    Google Scholar 

  65. Kohl, and Loo, L. S. (1982). Protection of neonatal mice against herpes simplex virus infection. Probable in vivo antibody-dependent cellular cytotoxicity. J. Immunol.,129, 370–6

    Google Scholar 

  66. Gonik, B., Loo, L. S., Bigelow, R. and Kohl, S. (1985). Influence of menstrual cycle variations on natural killer cytotoxicity and antibody dependent cellular cytotoxicity to cells infected with herpes simplex virus.J. Reprod. Med,30, 493–6

    PubMed  CAS  Google Scholar 

  67. Gonik, B., Loo, L. S., Bigelow, R. and Kohl, S. (1984). Influence of naproxen therapy on natural killer cytotoxicity and antibody-dependent cellular cytotoxicity against cells infected with herpes simplex virus.J. Reprod. Med,29, 722–6

    PubMed  CAS  Google Scholar 

  68. Oldstone, M. B. A. (1981). Lysis of human cells infected with a variety of RNA and DNA viruses is dependent on the alternative complement pathway and specific divalent antibody. In, Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.).The Human Herpes Viruses. An Interdisciplinary Perspective, pp. 326–29. ( NY: Elsevier Press )

    Google Scholar 

  69. Smiley, M. L., Hoxie, J. A. and Friedman, H. M. (1985). Herpes simplex virus type 1 infection of endothelial, epithelial and fibroblast cells induces a receptor for C3b.J. Immunol,134, 2673–8

    PubMed  CAS  Google Scholar 

  70. Rouse, B. T. (1984). Cell-mediated immune mechanisms. In Rouse, B. T. and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infections, pp. 107–120. ( Florida: CRC Press )

    Google Scholar 

  71. Schmid, D. S., Larson, H. and Rouse, B. T. (1981). The role of accessory cells and T-cell growth factor in induction of cytotoxic T-lymphocytes against herpes simplex virus antigens.Immunology,44, 755–63

    PubMed  CAS  Google Scholar 

  72. Ferrar, W. L., Johnson, H. M. and Ferrar, J. J. (1981). Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin 2.J. Immunol,126, 1120–5

    Google Scholar 

  73. Schmid, D. S., Larsen, H. S. and Rouse, B. T. (1982). Role of la antigen expression and secretory function of accessory cells in induction of cytotoxic T lymphocyte responses against herpes simplex virus.Infect. Immun,37, 1138–47

    PubMed  CAS  Google Scholar 

  74. Yasukawa, M. and Zarling, J. M. (1985). Human cytotoxic T-cell clones directed against herpes simplex virus infected cells. Ill Analysis of viral glycoproteins recognised by CTL clones by using recombinant herpes simplex virus.J. Immunol,134, 2679–82

    PubMed  CAS  Google Scholar 

  75. Zarling, J. M., Moran, P. A., Burke, R. L., Pachl, C., Berman, P. W. and Lasky, L. A. (1986). Human cytotoxic T-cell clones directed against herpes simplex virus-infected cells. IV. Recognition and activation by cloned glycoproteins gB and gD.J. Immunol,136, 4669–73

    PubMed  CAS  Google Scholar 

  76. Yasukawa, M. and Zarling, J. M. (1984). Human cytotoxic T cell clones directed against herpes simplex virus-infected cells. I. Lysis restricted by HLA class II MB and DR antigens.J. Immunol,133, 422–7

    PubMed  CAS  Google Scholar 

  77. Wainberg, M. A., Portnoy, J. D., Clecner, B., Hubschman, S., Lagace-Simard, J., Rabinovitch, N., Remer, Z. and Mendelson, J. (1985). Viral inhibition of lymphocyte proliferation responsiveness in patients suffering from recurrent lesions caused by herpes simplex virus.J. Inf. Dis,152, 441–8

    Article  CAS  Google Scholar 

  78. Andervont, H. B. (1929). Activity of herpetic virus in mice. J. Infect. Dis.,44, 383–93

    Article  Google Scholar 

  79. Nahmias, A. J. and Visintine, A. M. (1976). Herpes simplex. In Remington, J. S. and Klein, J. O. (eds.).Infectious Diseases of the Foetus and Newborn Infant, p. 156. ( Philadelphia: W. B. Saunders )

    Google Scholar 

  80. Yeager, A. S., Arvin, A. M., Urbani, L. J. and Kemp, L. A. (1980). Relationship of antibody to outcome in neonatal herpes simplex virus infection.Infect. Immun,29, 532–8

    PubMed  CAS  Google Scholar 

  81. Whitley, R. J., Nahmias, A. J., Visintine, A. M., Fleming, C. L. and Alford, C. A. (1980). The natural history of herpes simplex virus infections of mother and newborn.Pediatrics,66, 489–94

    PubMed  CAS  Google Scholar 

  82. Sullender, W. M., Miller, J. L., Yasukawa, L. L., Bradley, J. S., Black, S. B., Yeager, A. S., and Arvin, A. M. (1987). Humoral and cell mediated immunity in neonates with herpes simplex virus infection.J. Inf. Dis,155, 28–37

    Article  CAS  Google Scholar 

  83. Hayward, A., Herberger, M. and Corey, L. (1986). IgG subclass of anti-HSV antibodies following neonatal HSV infections.Eur. J. Pediatr,145, 250–1

    Article  PubMed  CAS  Google Scholar 

  84. Baron, S., Georgiades, J. and Worthington, M. (1981). Potential for post exposure prophylaxis of neonatal herpes using passive antibody. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.). The Human Herpesviruses.An Interdisciplinary Perspective, pp. 491–495. ( NY: Elsevier Press )

    Google Scholar 

  85. Pass, R. F., Dworsky, M. E., Whitley, R. J., August, A. M., Stagno, S. and Alford, C. A., Jr. (1981). Specific lymphocyte blastogenic responses in children with cytomegalovirus and herpes simplex virus infections acquired early in infancy.Infect. Immun,34, 166–70

    PubMed  CAS  Google Scholar 

  86. Leibson, P. J., Hunter-Laszlo, M., Douvas, G. S. and Hayward, A. R. (1986). Impaired neonatal natural killer-cell activity to herpes simplex virus: decreased inhibition of viral replication and altered response to lymphokines.J. Clin. Immunol,6, 216–24

    Article  PubMed  CAS  Google Scholar 

  87. Frazier, J. P., Kohl, S., Pickering, L. K. and Loo, L. S. (1982). The effect of route of delivery on neonatal natural killer cytotoxicity and antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells.Pediatr. Res,16, 558–60

    Article  PubMed  CAS  Google Scholar 

  88. Miller, M. E. (1978). Host Defences in the Human Neonate. ( NY: Grune and Stratton )

    Google Scholar 

  89. Blyth, W. A. and Hill, T. J. (1984). Establishment, maintenance and control of herpes simplex virus latency. In Rouse, B. T., and Lopez, C. (eds.).Immunobiology of Herpes Simplex Virus Infection, pp. 10–32. ( Florida: CRC Press )

    Google Scholar 

  90. Klein, R. J. (1985). Initiation and maintenance of latent herpes virus infections: the paradox of perpetual immobility and continuous movement.Rev. Inf. Dis,7, 21–30

    Article  CAS  Google Scholar 

  91. Openshaw, H., Tsuyoshi, S., Wohlenberg, C. and Notkins, A. L. (1981). The role of immunity in latency and reactivation of herpes simplex virus. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.).The Human Herpesviruses. An Interdisciplinary Perspective, pp. 289–296. ( NY: Elsevier Press )

    Google Scholar 

  92. Yasumoto, S., Okabe, N. and Mori, R. (1986). Role of epidermal Langerhans cells in resistance to herpes simplex virus infection.Arch. Virol,90, 261–71

    Article  PubMed  CAS  Google Scholar 

  93. Wrzos, H. and Rapp, H. (1985). Experimental model for activation of genital herpes simplex virus. J. Inf. Dis.,151, 349–54

    Article  CAS  Google Scholar 

  94. Scriba, M. (1976). Recurrent genital herpes simplex virus (HSV) infection in guinea pigs.Med. Microbiol Immunol, 162, 201–8

    Article  PubMed  CAS  Google Scholar 

  95. Baker, D. A. and Thomas, J. (1985). The effect of prostaglandin E2 on the initial immune response to herpes simplex virus infection.Am. J. Obstet. Gynecol,151, 586–90

    PubMed  CAS  Google Scholar 

  96. Merigan, T. C. (1981). Immunosuppression and herpes viruses. In Nahmias, A. J., Dowdle, W. R. and Schinazi, R. F. (eds.). The Human Herpesviruses.An Interdisciplinary Perspective, pp. 309–316. ( NY: Elsevier Press )

    Google Scholar 

  97. Sheridan, J. F., Beck, M., Aurelian, L. and Radowsky, M. (1985). Immunity to herpes simplex virus: virus reactivation modulates lymphokine activity.J. Inf. Dis,152, 449–56

    Article  CAS  Google Scholar 

  98. Rola-Pleszczynski, M. and Lieu, H. (1984). Natural cytotoxic cell activity linked to time of recurrence of herpes labialis.Clin. Exp. Immunol,55, 224–8

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hall, M.J., Jeffries, D.J. (1988). Immunobiology of Sexually Transmitted Disease: Herpes Simplex Virus. In: Wright, D.J.M. (eds) Immunology of Sexually Transmitted Diseases. Immunology and Medicine, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1255-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1255-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7057-7

  • Online ISBN: 978-94-009-1255-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics