Advertisement

Probability in Quantum Mechanics

  • G. T. Rüttimann
Part of the Fundamental Theories of Physics book series (FTPH, volume 24)

Abstract

Non-commutative measure theory serves as a mathematical basis to compare the classic 1 and the quantum mechanical probability scheme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. E. G. Beltrametti, G. Cassinelli The Logic of Quantum MechanicsEncyclopedia of Mathematics and Its Applications 15 Addison-Wesley Publishing Company Reading Mass. 1981Google Scholar
  2. Birkhoff, G. vonNeumann, J. 1936 The logic of quantum mechanics. Annals of mathematics 37 823-843CrossRefMathSciNetGoogle Scholar
  3. W. Feller An Introduction to Probability Theory and Its Applications Wiley § Sons New York 1950zbMATHGoogle Scholar
  4. B. de Finetti Theory of Probability Wiley § Sons, Inc. New York 1974zbMATHGoogle Scholar
  5. D. J. Foulis, C. H. Randall: ′Operational Statistics I′ 13 1972 1667-1675CrossRefzbMATHADSMathSciNetGoogle Scholar
  6. S. P. Gudder Stochastic Methods in Quantum Mechanics North Holland New York 1979zbMATHGoogle Scholar
  7. J. M. Jauch Foundations of Quantum Mechanics Addison-Wesley Reading Mass. 1968zbMATHGoogle Scholar
  8. J. von Neumann: Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955.Google Scholar
  9. C. Piron Foundations of Quantum Physics 1976zbMATHGoogle Scholar
  10. C. H. Randall, D. J. Foulis: ′A Mathematical Setting for Inductive Reasoning′ Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science III CA Hooker Reidel Publishing Company Dordrecht-Holland 1976 169-205Google Scholar
  11. GT RüttimannLogikkalküle der Quantenphysik Duncker und Humblot Berlin 1977Google Scholar
  12. G. T. Rüttimann: ′Non-commutative Measure Theory′. Habilitationsschrift, Universität Bern, 1980.Google Scholar
  13. GT Rüttimann Expectation Functionals of Observables and Counters′. Reports on Mathematical Physics 21 213-222CrossRefzbMATHADSMathSciNetGoogle Scholar
  14. V. S. VaradarajanGeometry of Quantum Theory Von Nortrand Princeton N.J. 1968zbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • G. T. Rüttimann
    • 1
  1. 1.Institute of Mathematical StatisticsUniversity of BerneBerneSwitzerland

Personalised recommendations