Classical and Quantum Probabilities

  • Eftichios Bitsakis
Conference paper
Part of the Fundamental Theories of Physics book series (FTPH, volume 24)


The object of this paper is to bring out differences as well as similarities between classical and quantum probabilities. The first part of the paper is devoted to a brief analysis of the two main epistemological interpretations of probability — the positivist and the realist interpretation. The second part concerns the essential premises and characteristics of classical probabilities. The problem of the ″nature″ of quantum probabilities and of their differences from classical ones is the subject of the following part. The main thesis supported here is that classical probabilities are, in the general case, actual, the pontentialities before the measurement, while quantum probabilities are the measure of the potentialities of the quantum ensemble. Quantum statistical deter-minism is a concept transcending the classical definitions of determinism; it is the epistemological generalization of the fact that quantum probabilities are determined in a specific way, characteristic of the microphysical world.


Joint Probability Classical Probability Classical Physic Statistical Ensemble Quantum Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    L.E. Ballentine, Am.J. Phys., 54, 883 (1986)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    J.M. Jauch, Cah. Fund. Scientiae, 27 (1975). Nevertheless, it is well known that the above point of view is not accepted by many specialists. The non-boolean structure of quantum propositions, the alleged inexistence of joint probabilities in Q.M. and the validity of the inequalities of Heisenberg are on the basis of the arguments concerning the inadequacy of the Kolmogorov formalism of proability theory for quantum systems and the need of a more general probability theory. See, e.g.:l) G. Birkhoff, J. von Neumann, Ann. Math., 37, 823 (1946); 2) F.W. Mackey, The Mathematical Foundations of Quantum Mechanics, Harvard Univ. Press, 1960; 3) V.S. Varadarajan, Commun. on Pure and Appl. Math., XV, 189 (1962); 4) R.P. Feynman, Proc. Sec. Berkeley Symp. on Math. Stat, and Prob., Berkeley, California, 1951; 5) V. Kags-Romano, Jour. Phil. Logic, 6, 455 (1977). The axioms of modern probability theory were formulated by A.M. Kolmogorov in his work Foundations of the Theory of Probability Chelsea, N.Y., 1956 (German original, Berlin 1933).Google Scholar
  3. 3.
    R. von Mises, Mathematical Theory of Probability and Statistics, Academic Press, N.Y., 1964, p.l.zbMATHGoogle Scholar
  4. 4.
    K. Popper, in Quantum Theory and Reality, M. Bunge Ed., 1967Google Scholar
  5. 5.
    A. I. Khintchine, in: Questions Scientifiques, 4 (1954), Ed. de la Nouvelle CritiqueGoogle Scholar
  6. 6.
    Laplace, Oeuvres Completes, Gauthier-Viliars, Paris 1878,v.7, p.6.Google Scholar
  7. 7.
    D. Bohm, Causality and Chance in Modern Physics, Routledge and Kegan Paul, London, 1959, p.26.Google Scholar
  8. 8.
    R. von Mises, op.cit., p.2.Google Scholar
  9. 9.
    A.I. Khintchine, op.cit.Google Scholar
  10. 10.
    Concerning this question, cf.: 1)A.I. Khintchine, ibid, 2) J. Bonit- zer, Philosophie du Hasard, Ed. Sociales, Paris 1984. 3) T.A. Brody, this Meeting.Google Scholar
  11. 11.
    R. von Mises, op.cit., p.343. Gnedenko and Khintchine give the following definition of the law of large numbers: ″Alors qu’une quantite aleatoire, consideree isolement, peut souvent prendre des valeurs fort eloignees de sa valeur moyenne (cfest-a-dire accuser une forte dispersion)9la moyenne arithmetique d’un grand nombre de quantites aleatoires se comporte a cet egard de fagon tout a fait differente, en ce qufelle n’est sujette qu’a une tres faible dispersion et qu!il existe une probability ecrasante pour quTelle prenne exclusivement des valeurs tres voisines a sa valeur moyenne″ (B.V. Gnedenko, A.Ia. Khintchine, Introduction a la Theorie des Probabilites., Dunod, Paris 1963, p.121).Google Scholar
  12. 12.
    K. Popper, D.W. Miller, Phil. Trans. R.Soc. Lond.. A321, 569 (1987)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    H. Margenau, L. Cohen, in Quantum Theory and Reality. M. Bunge (Ed), 1967.Google Scholar
  14. 14.
    Many writers identify the classical and the laplacean (mechanistic) determinism. Thus e.g. V.Fock writes: ″Classical (laplacean) determinism /″.. .7 can be defined as a point of view according to which the refinement of observation methods, together with increasing accuracy in the formulation of the laws of nature and in mathematical deductions from these laws, permits in principle a unique prediction of the whole course of events’1 (v. Fock, Usp. Phvs. Nauk, LXII, 461 (1957) ). But the possibility of unique prediction is a characteristic of the laplacean as well as of the dynamical form of determinism (electromagnetism, relativistic theory of gravitation). Identifying the mechanistic with the dynamical form of determination, which has qualitative different physical foundation, is the first step for the rejection of determinism in the field of quantum mechanics.(Cf. E. Bitsakis, Physique et Materialisme, Ed. Sociales, Paris, 1983.Id. Found, of Phvs., 18, 331 (1988)).Google Scholar
  15. 15.
    S.P. Gudder, J. Math. Phvs., 11, 1037 (1970).CrossRefzbMATHADSMathSciNetGoogle Scholar
  16. 15.A
    E. Bitsakis, in: Problems in Quantum Physics, World Scientific Publisher, Singapore, 1988.Google Scholar
  17. 16.
    See,e.g., H. Margenau, L. Cohen, op.cit.,Google Scholar
  18. 17.
    F. Bopp, in Observation and Interpretation, S. Korner (Ed.), 1957.Google Scholar
  19. 18.
    M. Born, J. Phys. et Rad., 20, 43 (1959).CrossRefGoogle Scholar
  20. 19.
    J.P. Terletski, in Questions scientifiques, op.cit., Cf. also,Google Scholar
  21. 19.A
    .P. Vigier, in Observation and Interpretation, S. Korner (Ed.), Butter- worths Publ., 1952Google Scholar
  22. 20.
    K. Marx-F. Engels, Etudes philosophiques, Paris 1961, p.49.Google Scholar
  23. 21.
    L.E. Ballentine, op.cit.Google Scholar
  24. 22.
    E. Wigner, Am. J. Phys., 31, 6(1963).CrossRefzbMATHADSMathSciNetGoogle Scholar
  25. 23.
    E. Wigner, The Monist, 48, No 2, 1964.Google Scholar
  26. 24.
    V. Fock, Usp. Fig. Nauk, LXII, 461 (1957). Id., Sov. Phys. Usp., 66 208 (1958).Google Scholar
  27. 25.
    See the articles of L. de Broglie and E. Schrödinger, in Louis de Broglie, Physicien et Penseur, Albin Michel, Paris, 1952Google Scholar
  28. 26.
    E. Wigner, Am. J. Phvs., op.cit.Google Scholar
  29. 27.
    A. Einstein, J. Franklin Inst., 22, 349 (1936).CrossRefADSGoogle Scholar
  30. 28.
    G. Ludwig, in The Physicist Conception of Nature, J. Mehra (Ed.), 1973.Google Scholar
  31. 29.
    E. Schrödinger, Nuovo Cim, I, 5 (1955).Google Scholar
  32. 30.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics, 1955, pp.226-228zbMATHGoogle Scholar
  33. 31.
    W. Heisenberg, Physics and Philosophy, Allen and Unwin, London, 1958, p.81.Google Scholar
  34. 32.
    W. Heisenberg, Physics and Philosophy, Allen and Unwin, London, 1958, p.81.zbMATHGoogle Scholar
  35. 33.
    Cf. E. Bitsakis, ″Quantum Statistical Determinism″, Found, of Physics, 18, 331 (1988).CrossRefADSMathSciNetGoogle Scholar
  36. 34.
    Heisenberg and Bohr had some intuitions concerning the relations between the potential and the real in Q.M. See their books cited above. For a critical analysis, cf. E. Bitsakis in Microphysical Reality and Quantum Formalism. A. van der Merwe et al. (Eds), Kluwer Acad. Press, 1988.Google Scholar
  37. 35.
    E. Schrödinger, op.cit.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Eftichios Bitsakis
    • 1
    • 2
  1. 1.Department of PhilosophyUniversity of IoanninaGreece
  2. 2.Department of PhysicsUniversity of AthensGreece

Personalised recommendations