Relativity and Probability, Classical and Quantal

  • O. Costa de Beauregard
Conference paper
Part of the Fundamental Theories of Physics book series (FTPH, volume 24)


A ’manifestly relativistic’ presentation of Laplace’s algebra of conditional probabilities is proposed, and its ’correspondence’ with Dirac’s algebra of quantal transition amplitudes is displayed. The algebraic reversibility of these is classically tantamount to time reversal, or ’T-in variance’, and quan tally to ’CPT-in variance’. This is closely related to the de jure reversibility of the ⇄ negentropy information transition, although de facto the upper arrow prevails aver the lower one (Second Law).


Conditional Probability Physical Review Jordan Algebra Feynman Graph Shaped Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharonov, Y. and Albert, D.Z. 1980, ’States and Observables in Relativistic Quantum Mechanics’. Physical Review 21: 3316-3324.ADSMathSciNetGoogle Scholar
  2. Aharonov, Y. and Albert, D.Z. (1981), ’Can we make sense out of the Measurement Process in Relativistic Quantum Mechanics’. Physical Review 24: 359- 370.ADSGoogle Scholar
  3. Bergson, H. (1907), L’Evolution crlatrice. Alcan, Paris.Google Scholar
  4. Boltsmann, L. (1964), Lectures on Gas TheoryGoogle Scholar
  5. Born, M. (1926), ’Quantenmechanik des Stossvorgange Zeitschrift für Physik 38: 858-888CrossRefGoogle Scholar
  6. Costa de Beauregard, O.: (1953) ’Une Riponse 1’Argument Dirigt par Einstein, Podolsky et Rosen Contre 1’interpret at ion bohrienne des Phénoménes Quantiques’ C. R. Academies des sciences 236: 1632-1634.zbMATHMathSciNetGoogle Scholar
  7. Costa de Beauregard, O.: (1977), ’Time Symmetry and the Einstein-Podolsky-Rosen Paradox’. II Nuovo Cim. 42B: 41-64.CrossRefADSGoogle Scholar
  8. Costa de Beauregard, O.: (1979), ’Time Symmetry and the Einstein-Podolsky-Rosen Paradox, II’. II Nuovo Cimento 51B, 267-279.Google Scholar
  9. CosCosta de Beauregard, O.: (1981), ’Is the Deterministically Evolving State Vector an Unnecessary Concept?, Lettere al Nuovo Cimento 31: 43-44.CrossRefGoogle Scholar
  10. Costa de Beauregard, O.: (1982), ’Is the Deterministically Evolving State Vector a Misleading Concept’. Lettere al Nuovo Cimento 36: 39-40.CrossRefGoogle Scholar
  11. Costa de Beauregard, O.: (1983), ’LorentE and CPT Invariances and the Einstein-Podolsky-Rosen Correlations’. Physical Review Letters 50: 867-869.CrossRefADSGoogle Scholar
  12. Costa de Beauregard, O.: (1985) ’On Some Frequent but Controversial Statements concerning the Einstein-Podolsky-Rosen Correlations’. Foundations of Physics 15: 871-887.CrossRefADSGoogle Scholar
  13. Costa de Beauregard, O.: (1986), ’Causality as Identified with Conditional Probability and the Quant al Nonseparability’. Annals of the New York Acad, of Sciences 480: 317-325.CrossRefGoogle Scholar
  14. Costa de Beauregard, O.: (1987a), ’On the Zigzagging Causality EPR Model: Answer to Vigier and Coworkers and to Sutherland’. Foundations of Physics 17: 775-785.CrossRefADSMathSciNetGoogle Scholar
  15. Costa de Beauregard, O.: (1987b), Time, The Physical Magnitude. Reidel: Dordrecht.CrossRefGoogle Scholar
  16. Cramer, J.G. (1980), ’Generalised Absorber Theory and the Einstein-Podolsky- Rosen Paradox’. Physical Review 22: 362-376.ADSMathSciNetGoogle Scholar
  17. Cramer, J.G. (1986), ’The Transactional Interpretation of Quantum Mechanics’. Reviews of Modern Physics 58: 847-887.CrossRefADSMathSciNetGoogle Scholar
  18. Davidon, W.C. (1976), ’Quantum Physics of Single Systems’. II Nuovo Cimento 36: 34-40.CrossRefADSGoogle Scholar
  19. Dirac, P.A.M. (1930), The Principles of Quantum Mechanics. Clarendon Press: OxfordzbMATHGoogle Scholar
  20. Eccles, J. ’Do Mental Events Cause Neural Events Analogously to the Probability Fields of Quantum Mechanics?’. Procedings of the Royal Society 22: 411-428.Google Scholar
  21. Einstein, A (1949), ’Reply to Criticisms’. In Albert Einstein Philosopher Scientist, edited by Shilpp P.A.. Illinois: The Library of Living Philosophers: pp. 665-688.Google Scholar
  22. Einstein, A., Podolsky B. and Rosen, N. (1935), ’Can Quantum Mechanical Description of Physical Reality be Considered Complete’. Physical Review 48: 777-780.CrossRefADSGoogle Scholar
  23. Feynman, R.P. (1949a), ’The Theory of Positron’. Physical Review 76: 749-759.CrossRefzbMATHADSMathSciNetGoogle Scholar
  24. Feynman, R.P. (1949b), ’Space-time Approach to quantum Electrodynamics’. Physical Review 76: 769-789.CrossRefzbMATHADSMathSciNetGoogle Scholar
  25. Pock, V. (1948), ’On the Interpretation of the Wave Function Directed Towards the Past’. Doklady Acad. Nauk SSSR 60: 1157-1159.Google Scholar
  26. Jahn, R., and Dunne, B.J. (1987), Margins of Reality.Google Scholar
  27. Jaynes, E.T. (1983), Papers on Probability, Statistics and Statistical Physics, edited by Rosenkranz, R.D.. Dordrecht: Reidel.Google Scholar
  28. Jordan, P. (1926), ’Ueber eine Begriindung des Quantummechanik’. Zeitschrift fiir Physik 40: 809-838.CrossRefADSGoogle Scholar
  29. Lande, A. (1965), New Foundations of Quantum Mechanics. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  30. Laplace, P.S. (1891), ’Mlmoire sur la Probability des Causes par les Ev6nements’. In Oeuvres Completes, Paris: Gauthier Villars, vol. 8: pp. 27-65.Google Scholar
  31. Lewis, G.N. (1930), ’The Symmetry of Time in Physics’. Science 71: 570-577.CrossRefADSGoogle Scholar
  32. Libet, B. (1985), ’On Conscious Will in Voluntary Action’. Behavioral and Brain Sciences 8: 529-615.CrossRefGoogle Scholar
  33. Loschmidt, J. (1876), ’Ueber der Zustand des Warmgleichgewichtes eines Systems von Kdrpern mit Riicksicht auf die Schwerkraft’. Sits. Adak. Wiss. in Wien 73: 139-145.Google Scholar
  34. Lüders, G. (1952), ’Zur Bewegungsumkehr in Quantiesierten Feldtheorien’. Zeitschrift fiir Physik 133: 325-339.CrossRefzbMATHADSGoogle Scholar
  35. Mehlberg, H. (1961), ’Physical Laws and the Time Arrow’. In Current Issues in the Philosophy of Science, edited by Feigel, H. and Maxwell D.. New York: Holt Reinhart, pp. 105-138.Google Scholar
  36. Miller, W.A., and Wheeler, J.A. (1983), ’Delayed Choice Experiments and Bohr’s Elementary Phenomenon’. In Proceedings of the International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology, edited by Kamefuchi S. and alii. Tokyo: Phys. Society, pp. 140-152.Google Scholar
  37. Nicolis, G. and Prigogine, I. (1977), Self-Organisation in Non-Equilibrium Systems. New York: Wiley.Google Scholar
  38. Pegg, D.T. (1980), ’Objective Reality, Causality and the Aspect Experiment’. Physics Letter 78A: 233-234.ADSGoogle Scholar
  39. Rayski, J. (1979), ’Controversial Problems of Measurement within Quantum Mechanics’. Found. Phys. 9: 217-236.CrossRefADSMathSciNetGoogle Scholar
  40. Rietdijk, C.W. (1981), ’Another Proof that the Future can Influence the Present’. Found. Phys. 11: 783-790.CrossRefADSGoogle Scholar
  41. Schwinger, J. (1948), ’Quantum Electrodynamics, I: a Covariant Formulation’. Physical Review 82: 914-927.CrossRefADSMathSciNetGoogle Scholar
  42. Stapp, H.P. (1975), ’Bell’s Theorem and World Process’. II Nuovo Cimento 29B: 270-276.ADSGoogle Scholar
  43. Sutherland, R.I. (1983), ’Bell’s Theorem and Backwards-in-Time Causality’. Intern. J. Theor. Phys. 22: 377-384.CrossRefGoogle Scholar
  44. Tomonaga, S.I. (1946), ’On a Relativistically Invariant Formulation of the Quantum Theory of Wave Field’. Prog. Theor. Phys. 1: 27-42.CrossRefzbMATHADSMathSciNetGoogle Scholar
  45. Waals, J.D. van der, ’Ueber die Erkl ärung des Naturgesetse auf Statistisch-Me- chanischer Grundlage’. Phys. Zeitschrift 12: 547-549.Google Scholar
  46. Watanabe, S. (1955), ’Symmetry of Physical Laws’. Reviews of Modern Physics 27: 26-39.CrossRefzbMATHADSMathSciNetGoogle Scholar
  47. Wigner, E.P. (1967), Symmetries and Reflections. Cambridge Massachussets: M.I.T. PressGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • O. Costa de Beauregard

There are no affiliations available

Personalised recommendations