Stochastic Optics:A Wave Theory of Light Based on Classical Probabilities

  • Trevor W. Marshall
  • Emilio Santos
Conference paper
Part of the Fundamental Theories of Physics book series (FTPH, volume 24)


Quantum optics is based centrally, on the concept of the photon, a particle which is considered to belong to the family of elementary particles. We believe that this has led to serious errors, resulting from a failure to understand the concept of statistical independence, in the interpretation of photoelectron counts. We show that a purely wavelike description of the electromagnetic field is capable of explaining all of the phenomena which are said to exhibit the "wave-particle duality" nature of the photon. The resulting theory, which we call stochastic optics, is a natural by-product of Planck’s radiation theory; it may also be considered as a variety of semiclassical radiation theory in which there is always a random zeropoint electromagnetic field present in addition to any additional sources of radiation.


Beam Splitter Light Signal Bell Inequality Particle Behaviour Interference Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wheeler, J.A., Law without law, in Quantum theory of measurement, eds. Wheeler, J.A. and Zurek, W.H. (1983)Google Scholar
  2. 2.
    Hanbury-Brown, R. and Twiss, R.Q. Nature 177, 27 (1956)CrossRefGoogle Scholar
  3. 3.
    Grangier, P., Roger, G. and Aspect, A., Europhys. Letters 1, 173 (1986).CrossRefADSGoogle Scholar
  4. 4.
    Clauser, J.F. Phys. Rev. D. 9, 853 (1974).CrossRefADSGoogle Scholar
  5. 5.
    Marshall, T.W. and Santos, E., ’Stochastic optics - a classical alternative to quantum optics’. Preprint. Universidad de Cantabria, 1987.Google Scholar
  6. 6.
    Marshall, T.W. and Santos, E., Found. Phys. (in press) (1988).Google Scholar
  7. 7.
    Marshall, T.W., ’Stochastic electrodynamics and the EPR argument’ , in Quantum mechanics versus local realism - The Einstein Podolsky and Rosen paradox. Ed. Selleri F. 1988Google Scholar
  8. 8.
    Einstein. A., in The Born-Einstein letters, (Macmillan, London, 1971) (Born translates Prinzip der Nahewirkung as "Principle of contiguity". We believe "Principle of Local Action" is more accurate).Google Scholar
  9. 9.
    Pfleegor, R.L. and Mandel, L., Phys. Rev. 159, 1084 (1967).CrossRefADSGoogle Scholar
  10. 10.
    Mandel, L. Prog. Opt. 13 27-68 (1976).CrossRefGoogle Scholar
  11. 11.
    Tersoff, J. and Bayer, D. Phys. Rev. Lett. 50 553 1983CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Pais A., Subtle is the Lord 1982 p. 430.Google Scholar
  13. 13.
    A., Sardelis, D. Vigier, J.P. Phys. Lett. 50A 228 1984ADSGoogle Scholar
  14. 13.A
    Cufaro Petroni, N., Kyprianidis, A., Maric, Z., Sardelis, D., Vigier, J.P., Phys. Lett. 51A, 4 (1984).ADSGoogle Scholar
  15. 14.
    Boyer, T.H., in Foundations of radiation theory and quantum electrodynamics, ed. A.O. Barut, (Plenum, New York, 1980) page 49Google Scholar
  16. 15.
    de la Peña, L. Stochastic processes applied to physics and other related fields, eds. Gomez, B., Moore, S.M., Rodriguez-Vargas, A.M. adn Rueda, A., (World Scietific, Singapore, 1983) page 428.Google Scholar
  17. 16.
    Clauser, J.F. and Shimony, A., Rep. Prog. Phys. 41, 1881 (1978)CrossRefADSGoogle Scholar
  18. 17.
    Selleri, F., ed., Quantum mechanics versus local realism - The Einstein, Podolsky and Rosen paradox (Plenum, New York, 1987). In press.Google Scholar
  19. 18.
    Marshall, T.W. and Santos, E., ’Stochastic optics. Analysis of the optical tests of Bell inequalities’, Preprint Universidad de Cantabria (Santander, Spain, 1987).Google Scholar
  20. 19.
    Aspect, A., Grangier, P. and Roger, G. Phys. Rev. Lett 47, 460 (1981).CrossRefADSGoogle Scholar
  21. 19.A
    Phys. Rev. Lett. 49, 91, (1982)Google Scholar
  22. 19.B
    Aspect, A., Dalibard, J. and Roger, G. Phys. Rev. Lett. 49, 1804 (1982)CrossRefADSMathSciNetGoogle Scholar
  23. 20.
    Perrie, W., Duncan, A.J., Beyer, H.J. and Kleinpoppen, H., Phys. Rev. Lett. , 54 1790 (1985).CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Trevor W. Marshall
    • 1
  • Emilio Santos
    • 2
  1. 1.Dept. of MathematicsUniv. of MachesterManchesterUK
  2. 2.Dept. de Fisica ModernaUniversidad de CantabriaSantanderSpain

Personalised recommendations