On the Search of the Time Operator Since Schrödinger

  • Z. Marić
Conference paper
Part of the Fundamental Theories of Physics book series (FTPH, volume 24)


The conceptual and mathematical problems concerning the time operator and its operational meaning in quantum mechanics and the ″inner-time″ operator in classical statistical physics are reviewed. The common point is the use of non-unitary similarity transformation. In the quantum case the time operator is related to the non-orthogonal resolution of identity. It is argued that the similar results for the notion of entropy obtained for a certain class of classical dynamical systems in Hilbert-space and phase-space representation require further elucidations.


Time Operator Quantum Measurement Shift Operator Hermitian Operator Operational Meaning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Bohr, Phys. Rev. 48 (1935). See also N. Bohr, ″Atomic Physics and Human Knowledge″, Wiley, New-York 1958, pp. 32-66Google Scholar
  2. 2.
    L. Mandelstam and I. Tamm, J. Phys. U.S.S.R. 9 (1945)249MathSciNetGoogle Scholar
  3. 3.
    V. Fock and N. Krylov, J. Phys. U.S.S.R. 11 (1947) 112MathSciNetGoogle Scholar
  4. 4.
    Y. Aharonov and D. Bohm, Phys. Rev. 122 (1961) 1649;CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    E. SchrÖdinger Sitzungsber der Preuss. Akad. der Wissenschaften, 1931 (12) p.238Google Scholar
  6. 6.
    W. Pauli, ″Encyclopedia of Physics″ (ed. S. Flugge) vol. 5/I; p. 60; (1958)Google Scholar
  7. 7.
    H. Paul, Annal. der.Physik 9 (1962) 252CrossRefADSGoogle Scholar
  8. 8.
    F. Engelmann and E.Fick, Phys. 178 (1964) 551CrossRefGoogle Scholar
  9. 9.
    G. R. Allcock, Ann. Phys. 53 (1969) 253CrossRefADSGoogle Scholar
  10. 10.
    H. Ekstein and A.J.F. Siegert, Ann. Phys. 68 (1971) 509CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    A. S . Holevo, Rep. Math. Phys. 13 1978 287CrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Bauer, Ann. Phys.(N.Y.) 150 (1983) 1CrossRefzbMATHADSGoogle Scholar
  13. 13.
    R-G. Newton, Ann. Phys. (N.Y.) 124 1980 327CrossRefADSGoogle Scholar
  14. 14.
    I. Prigogine, C. George, F. Henin and L. Rosenfeld, Chem. Scr. 4 (1973) 5Google Scholar
  15. 15.
    B. Misra, Proc. natl. Acad. Sci. 75 (1978) 1627CrossRefADSGoogle Scholar
  16. 16.
    H. Poincare, Com. Ren. Hebd. Seances Acad. Sci. 108 (1889) 550Google Scholar
  17. 17.
    N. Buric, ″New Aspects of Poincare’s Theorems on Entropy″, (in Serbian), M. Sc. Thesis, University of Belgrade 1986Google Scholar
  18. 18.
    A. S. Holevo, ″Probabilistic and Statistical Aspects of Quantum Theory″, North Holland 1987Google Scholar
  19. 19.
    B. Leaf, J. Math. Phys. 10 (1969) 1971CrossRefzbMATHADSMathSciNetGoogle Scholar
  20. 20.
    M. A. Naimark, Izv. Acad. Nauk SSSR Ser. Math. 4 (3) (1940) 277zbMATHGoogle Scholar
  21. 21.
    P. Walters, An Introduction to Ergodic Theory, 1982, p. 146.zbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Z. Marić
    • 1
  1. 1.Institute of PhysicsBeogradYugoslavia

Personalised recommendations