Schrödinger’s Thoughts on Perfect Knowledge

  • Włodzisław Duch
Conference paper
Part of the Fundamental Theories of Physics book series (FTPH, volume 24)


Perfect knowledge of the many-body system is contained in the wavefunction but, as Schrodinger has already emphasized, best possible knowledge of a whole does not include the best possible knowledge of its parts. Separability from the point of view of quantum mechanics is discussed. General “entangled” systems are analysed in terms of knowledge. If the state vector is defined for a whole system its parts are described only by mixed density operators. Correlations violating Bell’s inequality are necessary to avoid super luminal signaling and result from the lack of independent reality of subsystems. Model calculations on two separated atoms and on non- interacting gas show that the perfect knowledge of the whole system or the total wavef unction is not sufficient to calculate local properties without actually solving the local problem.


Quantum Mechanic Pure State Density Operator Bell Inequality Axiomatic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Wave-Particle Dualism, Eds: S. Diner, D. Fargue, G. Lochak, F. Selleri. D. Reidel, Dordrecht 1982Google Scholar
  2. 2.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47,777(1935)CrossRefzbMATHADSGoogle Scholar
  3. 3.
    E. Schrödinger, Naturwissenschaften 23,807; 823; 844(1935); Proc. Cambridge Phil. Soc. 31,555(1935); ibid. 32,446(1936)Google Scholar
  4. 4.
    N. Rosen, in: Symposium on the Foundations of Modern Physics, Eds. P. Lahti, P. Mittelstaedt, World Scientific, Singapore 1985, p. 17Google Scholar
  5. 5.
    H-J. Treder, Astron. Nachr. 304,145(1983)CrossRefADSGoogle Scholar
  6. 6.
    C. Piron, in [4], p. 207Google Scholar
  7. 7.
    D. Aerts, Found. Phys. 12,1131(1982);CrossRefADSMathSciNetGoogle Scholar
  8. 7.A
    D. Aerts, in [4], p. 305Google Scholar
  9. 8.
    O. Costa de Beauregard, Found. Phys. 15,871(1985)CrossRefADSGoogle Scholar
  10. 9.
    J. S. Bell,Physics 1,195(1965)Google Scholar
  11. 10.
    A. Pais, ′Subtle is the Lord, Oxford Univ. Press 1982Google Scholar
  12. 11.
    O. Piccioni, V. Mehihop, in [4], p. 197Google Scholar
  13. 12.
    D. Bohm, Y. Aharonov, Phys. Rev. 108,1070(1957)CrossRefADSMathSciNetGoogle Scholar
  14. 13.
    D. J. Bohm, B. J. Hiley,II luovo Cim. 35,137(1976)CrossRefADSGoogle Scholar
  15. 14.
    F. Selleri, Found. Phys. 12, 1087(1982)CrossRefADSMathSciNetGoogle Scholar
  16. 15.
    F. Selleri, ′History of the EPR Paradox′, in: Quantum Mechanics Versus Local Realism: the Einstein-Podolsfcy-Kosen Paradox, Plenum Publ. Co, London-Hew York 1987Google Scholar
  17. 16.
    V. Capasso, D. Fortunato, F. Selleri, Int. J. Theor. Phys. 7,319(1973)CrossRefMathSciNetGoogle Scholar
  18. 17.
    V. Duch, ′Violation of Bell inequalities in interference experiments′, in: Open Problems in Physics, Eds. L. Kostro, World Scientific, Singapore (in print); Correlations violating Bell′s inequality are necessary to save locality, Phys. Rev. Lett (submitted).Google Scholar
  19. 18.
    A.S. Davydov, Quantum Mechanics, Moscow 1963Google Scholar
  20. 19.
    P. Arrighini, Intermolecular Forces and Their Evaluation by Perturbation Theory, Lecture Notes in Chem. 25, Springer 1981Google Scholar
  21. 20.
    A. J. Legget, in: Quantum Concepts in Space and Time, Ed. R. Penrose, C.J. Isham, Clarendon Press, Oxford 1986Google Scholar
  22. 21.
    W. Duch, D. Aerts, Phys. Today 6,13(1986)CrossRefGoogle Scholar
  23. 22.
    T.A. Brody, Rev. Mexicana de Fisica 29,461(1983)MathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Włodzisław Duch
    • 1
  1. 1.Instytut Fizyki UMKToruńPoland

Personalised recommendations