Advertisement

Quantum Probability and Quantum Potential Approach to Quantum Mechanics

  • Anastasios Kyprianidis
Conference paper
Part of the Fundamental Theories of Physics book series (FTPH, volume 24)

Abstract

Starting from a classical Hamilton-Jacobi theory the Schrödinger equation of non relativistic quantum mechanics is derived by introducing an averaging procedure over the free parameters of the classical formalism. The conceptual implications, the relation to the causal interpretation and possible extensions of the formalism are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Goldstein, Classical Mechanics Addison-Wesley Cambridge 1956 9Google Scholar
  2. [2]
    D. Bohm, Phys. Rev. 85 1952 166 ; 181CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    See e.g. H. Freistadt, Suppl. Nuov. Cim. V, Sec. X (1957) 1.Google Scholar
  4. 4.
    J. B. Keller, Phys. Rev., 89 1953 1040CrossRefzbMATHADSMathSciNetGoogle Scholar
  5. 5.
    See e.g. F.J. Belifante, A survey of hidden variable theories, Pergamon Press 1973, Part II, App. G.Google Scholar
  6. 6.
    A. Kyprianidis : Hamilton-Jacobi theory and quantum mechanics, to appear in Proceedings of Conf. “Problems in quantum physics”, Gdansk, 1987.Google Scholar
  7. 7.
    A. Kyprianidis : Hamilton-Jacobi theory, classical phase-space and quantum mechanics, IHP Preprint, to be published.Google Scholar
  8. 7.
    A. Kyprianidis : Hamilton-Jacobi theory, classical phase-space and quantum mechanics, IHP Preprint, to be published.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Anastasios Kyprianidis
    • 1
  1. 1.Laboratoire de Physique ThéoriqueInstitut Henri PoincaréParis Cedex 05France

Personalised recommendations