Skip to main content

Use of heavy minerals in lithostratigraphic correlation, with examples from Brent sandstones of the northern North Sea

  • Conference paper

Abstract

Hydraulic and diagenetic effects may cause major problems in the correlation of sandstones on the basis of their heavy mineral content. The study of minerals with similar hydraulic and diagenetic behaviour helps to minimize the problems, with mineral pairs such as apatite-tourmaline and zircon-rutile being particularly useful. Varietal studies of individual mineral species minimize these possible errors further. Optical differentiation of colour or habit of minerals such as tourmaline is a somewhat subjective varietal method, whereas single-grain geochemical analysis, such as microprobe analysis of detrital garnet, avoids the problem of subjectivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen,V. T. 1948. Weathering and heavy minerals. J. Sediment. Petrol., 18, 38–42.

    Google Scholar 

  • Boswell, P. G. H. 1942. The stability of minerals in sedimentary rocks. Proc. Geol. Soc. Lond., 97, 56–75.

    Google Scholar 

  • Bramlette, M. N. 1941. The stability of minerals in sandstone. J. Sediment. Petrol., 11, 32–36.

    Google Scholar 

  • Cawood, P. A. 1983. Modal composition and detrital clinopyroxene geochemistry of lithic sandstones from the New England fold belt (east Australia): a Paleozoic forearc terrain. Geol. Soc. Am. Bull., 94, 1199–1214.

    Article  Google Scholar 

  • Deegan, C. E. and Scull, B. J. 1977. A Standard lithostratigraphic nomenclature for the central and northern North Sea. Report of the Institute of Geological Sciences 77/25.

    Google Scholar 

  • Dietz, V. 1973. Experiments on the influence of transport on shape and roundness of heavy minerals. Contrib. Sedimentol., 1, 69–102.

    Google Scholar 

  • Doyle, L. J., Carder, K. L. and Steward, R. G. 1983. The hydraulic equivalence of mica. J. Sediment. Petrol., 53, 643–648.

    Google Scholar 

  • Duddy, I. R., Gleadhow, A. J. W. and Keene, J. B. 1984. Fission track dating of apatite and sphene from Paleogene sediments of DSDP Leg 81, Site 555. In: Roberts, D. G., Schnitker, D. et al., Initial Reports of the Deep Sea Drilling Project 81, 725–729.

    Google Scholar 

  • Friese, F. W. 1931. Untersuchung von mineralen auf abnutzbarkeit bei verfractung im wasser. Tschermaks Mineral. Petrogr. Mitt., 14, 1–7.

    Google Scholar 

  • Galehouse, J. S. 1967. Provenance and paleocurrents of the Paso Robles Formation, California. Geol. Soc. Am. Bull., 78, 951–978.

    Article  Google Scholar 

  • Gaudette, H. E., Vitrac-Michard, A. and Allègre, C. J. 1981. North American Precambrian history recorded in a single sample: high-resolution U–Pb systematics of the Potsdam sandstone detrital zircons, New York State. Earth Planet. Sci. Lett., 54, 248–260.

    Article  Google Scholar 

  • Graue, E., Helland-Hansen, W., Johnsen, J., Lømo, L., Nøttvedt, A., Rønning, K., Ryseth, A. and Steel, R. 1987. Advance and retreat of Brent delta system, Norwegian North Sea. In: Brooks, J. and Glennie, K. (eds), Petroleum Geology of North West Europe, Graham & Trotman, London, 915–937.

    Google Scholar 

  • Groves, A. W. 1931. The unroofing of the Dartmoor Granite and the distribution of its detritus in the sediments of southern England. Q, J. Geol. Soc. Lond., 87, 62–96.

    Article  Google Scholar 

  • Hansley, P. L. 1987. Petrologic and experimental evidence for the etching of garnets by organic acids in the Upper Jurassic Morrison Formation, northwestern New Mexico. J. Sediment. Petrol., 57, 666–681.

    Google Scholar 

  • Harris, D. G. 1987. The role of geology in reservoir simulation studies. J. Petrolm Technol., 37, 1335–1344.

    Google Scholar 

  • Hubert, J. F. 1971. Analysis of heavy-mineral assemblages. In: Carver, R. E. (ed.), Procedures in Sedimentary Petrology, Wiley-Interscience, New York, 453–478.

    Google Scholar 

  • Hurford, A. J., Fitch, F. J. and Clarke, A. 1984. Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating. Geol. Mag., 121, 269–277.

    Article  Google Scholar 

  • Hurst, A. R. and Morton, A. C. 1988. An application of heavymineral analysis to lithostratigraphy and reservoir modelling in the Oseberg Field, northern North Sea. Mar. Petrolm Geol., 5, 157–169.

    Article  Google Scholar 

  • Kortekaas, T. F. M. 1985. Water/oil displacement characteristics in crossbedded reservoir zones. Soc. Petrolm Engrs J. (December), 917–926.

    Google Scholar 

  • Krynine, P. D. 1942. Provenance versus mineral stability as a controlling factor in the composition of sediments. Geol. Soc. Am. Bull., 53, 1850–1851 (abstract).

    Google Scholar 

  • Krynine, P. D. 1946. The tourmaline group in sediments. J. Geol., 54, 65–87.

    Article  Google Scholar 

  • Kyte, J. R. and Berry, D. W. 1975. New pseudo functions to control numerical dispersion. Soc. Petrolm Engrs J. (August), 269–276.

    Google Scholar 

  • McBride, E. F. 1985. Diagenetic processes that affect provenance determinations in sandstones. In: Zuffa, G. G. (ed.), Provenance of Arenites, Reidel, Dordrecht, 95–113.

    Google Scholar 

  • Mange-Rajetzky, M. A. and Oberhansli, R. 1982. Detrital lawsonite and blue sodic amphibole in the Molasses of Savoy, France, and their significance in assessing Alpine evolution. Schweiz. Mineral. Petrogr. Mitt., 62, 415–436.

    Google Scholar 

  • Milner, H. B. 1923. The study and correlation of sediments by petrographic methods. Mining Mag., 28, 80–92.

    Google Scholar 

  • Morton, A. C. 1979. Depth control of intrastratal solution of heavy minerals from Palaeocene sands of the North Sea. J. Sediment. Petrol., 49, 281–286.

    Google Scholar 

  • Morton, A. C. 1982. Lower Tertiary sand development in Viking Graben, North Sea. AAPG Bull., 66, 1542–1559.

    Google Scholar 

  • Morton, A. C. 1984a. Stability of detrital heavy minerals in Tertiary sandstones from the North Sea Basin. Clay Minerals, 19, 287–308.

    Article  Google Scholar 

  • Morton, A. C. 1984b. Heavy minerals from Paleogene sediments, Deep Sea Drilling Project Leg 81: their bearing on stratigraphy, sediment provenance and the evolution of the North Atlantic. In: Roberts, D. G., Schnitker, D. et al., Initial Reports of the Deep Sea Drilling Project 81, 653–661.

    Google Scholar 

  • Morton, A. C. 1985a. Heavy minerals in provenance studies. In: Zuffa G. G. (ed.), Provenance of Arenites. Reidel, Dordrecht, 249–277.

    Google Scholar 

  • Morton, A. C. 1985b. A new approach to provenance studies: electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology, 32, 553–566.

    Article  Google Scholar 

  • Morton, A. C. 1986. Dissolution of apatite in North Sea Jurassic sandstones: implications for the generation of secondary porosity. Clay Minerals, 21, 711–733.

    Article  Google Scholar 

  • Morton, A. C. 1987a. Detrital garnets as provenance and correlation indicators in North Sea reservoir sandstones. In: Brooks, J. and Glennie, K. (eds), Petroleum Geology of North West Europe, Graham & Trotman, London, 991–995.

    Google Scholar 

  • Morton, A. C. 1987b. Influences of provenance and diagenesis on detrital garnet suites in the Paleocene Forties sandstone, central North Sea. J. Sediment. Petrol., 57, 1027–1032.

    Google Scholar 

  • Morton, A. C. and Humphreys, B. 1983. The petrology of the Middle Jurassic sandstones from the Murchison Field, North Sea. J. Petrolm Geol., 5, 245–260.

    Article  Google Scholar 

  • Owen, M. R. 1987. Hafnium content of detrital zircons, a new tool for provenance studies. J. Sediment. Petrol., 57, 824–830.

    Google Scholar 

  • Pettijohn, F. J. 1941. Persistence of heavy minerals and geologie age. J. Geol., 49, 610–625.

    Article  Google Scholar 

  • Rittenhouse, G. A. 1944. Transportation and deposition of heavy minerals. Geol. Soc. Am. Bull., 54, 1725–1780.

    Google Scholar 

  • Russell, R. D. 1937. Mineral composition of Mississippi River sands. Geol. Soc. Am. Bull., 48, 1307–1348.

    Google Scholar 

  • Scavnicar, B. 1979. Pjescenjaci Pliocena i Miocena savske potoline. Zbornik Radova, sekcija za primjenu geologije, geofizike i geochemije, serija A 6(2), 351–382.

    Google Scholar 

  • Schärer, U. and Allègre, C. J. 1982. Investigation of the Archaean crust by single-grain dating of detrital zircon: a graywacke of the Slave Province, Canada, Can. J. Earth Sci., 19, 1910–1918.

    Article  Google Scholar 

  • Shukri, N. M. 1949. The mineralogy of some Nile sediments. Q. J. Geol. Soc. Lond., 105, 511–534.

    Article  Google Scholar 

  • Smale, D. and Morton, A. C. 1987. Heavy mineral suites of core samples from the McKee Formation (Eocene — lower Oligocene), Taranaki: implications for provenance and diagenesis. N. Z- J- Geol. Geophys., 30, 299–306.

    Google Scholar 

  • Smithson, F. J. 1941. The alteration of detrital minerals in the Mesozoic rocks of Yorkshire. Geol. Mag., 78, 97–112.

    Article  Google Scholar 

  • Thiel, G. A. 1940. The relative resistance to abrasion of mineral grain of sand size. J. Sediment. Petrol., 10, 103–124.

    Google Scholar 

  • Thiel, G. A. 1945. Mechanical effects of stream transportation on mineral grains of sand size. Geol. Soc. Am. Bull., 56, 1207 (abstract).

    Google Scholar 

  • van Andel, T. H. 1950. Provenance, transport and deposition of Rhine sediments. PhD. thesis, Univ. Gröningen.

    Google Scholar 

  • van Andel, T. H. 1959. Reflections on the interpretation of heavy mineral analyses. J. Sediment. Petrol., 29, 153–163.

    Google Scholar 

  • Weber, K. J. 1982. Influence of common sedimentary structures on fluid flow in reservoirs. J. Petrolm Technol., 44, 665–672.

    Google Scholar 

  • Weissbrod, T. and Nachmias, J. 1986. Stratigraphic significance of heavy minerals in the Late Precambrian — Mesozoic clastic sequence (‘Nubian Sandstone’) in the Near East. Sediment. Geol., 47, 263–269.

    Article  Google Scholar 

  • Wright, W. I. 1938. The composition and occurrence of garnets. Am. Mineral., 23, 436–449.

    Google Scholar 

  • Yerkova, R. M. 1970. Comparison of post-sedimentary alterations of oil-, gas- and water-bearing rocks. Sedimentology, 15, 53–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Norwegian Petroleum Society

About this paper

Cite this paper

Morton, A.C., Stiberg, J.P., Hurst, A., Qvale, H. (1989). Use of heavy minerals in lithostratigraphic correlation, with examples from Brent sandstones of the northern North Sea. In: Collinson, J.D. (eds) Correlation in Hydrocarbon Exploration. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1149-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1149-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7010-2

  • Online ISBN: 978-94-009-1149-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics