Skip to main content

Abstract

The production processes used in the preparation of superalloys for the highest temperature components of jet engines have in most respects been ahead of those used for other materials. This section on fabrication is derived largely from the technology of superalloy component manufacture. Much of the technology is transferrable to other materials and it seems likely that over the next decade much R and D in industry will be devoted to doing just that. Not everything is readily adapted. For example titanium is chemically extremely reactive and would pick up impurities from any crucible material. Both titanium and aluminium form impermeable oxide films making sintering of powder a very difficult process. Alloys currently favoured for HT Petrochemical processes are not readily formed either “cold or hot”. Nevertheless for all these and other HTMs there are some aspects of superalloy production which are being or could be adopted with benefit.

Conclusions and references for Sections 3.1.1. and 3.1.2. are included after Section 3.1.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annals of Occupational Hygiene, Okberg, 31., (4B), 529–545 pp. (1987)

    Google Scholar 

  2. Handbook of Composites Vol. 1, Birchall, J.D. et al. , Ed. Watt, W. and Perov, B.V., North Holland, 115–154 pp. (1985)

    Google Scholar 

  3. Communications Amer. Ceram. Soc., Prost, H.J. and Ray, R., C19 pp., Febr. (1982)

    Google Scholar 

  4. J. Amer. Ceram. Soc. 44, McGeary, R.K., (10), 513 pp. (1961)

    Article  CAS  Google Scholar 

  5. Special Ceramics, 1962, Long, W.M., Academic Press, London, 327 pp. (1963)

    Google Scholar 

  6. Bull. Am. Ceram. Soc. 60, Thompson, R.A., (2), 237 pp. (1981)

    Google Scholar 

  7. Bull. Am. Ceram. Soc. 61, Messing, C.L., et al, (8), 857 pp. (1982)

    CAS  Google Scholar 

  8. J. Am. Ceram. Soc. 60, Matsumoto R.L.K., (10), C216 pp. (1987)

    Google Scholar 

  9. J. Am. Ceram. Soc. 62, Strijbos, S., et al, (1), 57 pp. (1979)

    Article  CAS  Google Scholar 

  10. J. Am. Ceram. Soc. 64, DiMilia, R.A., (4), 667 pp. (1983)

    Article  Google Scholar 

  11. J. Am. Ceram. Soc. 67, Frey, R.G. and Halloran, J.W., (3), 199 pp. (1984)

    Article  Google Scholar 

  12. J. Am. Ceram. Soc. 66, DiMilia, R.A. and Reed, J.S., (9), 667 pp. (1983)

    Article  Google Scholar 

  13. Van Groenen and Lissenburg

    Google Scholar 

  14. Bull. Am. Soc. 62, Sarkar, M. and Gremiger, G.K., (11), 1280 pp. (1983)

    CAS  Google Scholar 

  15. Bull. Am. Soc. 58, Salamone, A.L. and Reed, J.S., (6), 618 pp. (1971)

    Google Scholar 

  16. Powder Tech. 34, Krycer, I., et al. , 39 pp. (1983)

    Article  CAS  Google Scholar 

  17. Advances in Ceramics – Forming of Ceramics, Mikeska, K. and Cannon, W.R., Ed. Mangels, J.A., Am. Ceram. Soc., Columbus, Ohio, 164 pp. (1984)

    Google Scholar 

  18. Advance in Ceramics, Nies, C.W. and Messing, G.L., 58 pp.

    Google Scholar 

  19. Powder Tech., 44, Miller, T.A. and York, P., 219 pp. (1985)

    Article  CAS  Google Scholar 

  20. Bull. Enging. Exp. Stn., Jenike A.W., Utah 123 (1964)

    Google Scholar 

  21. Bull. Am. Ceram. Soc. 65, Schuetz, J.E., (12), 1556 pp. (1986)

    CAS  Google Scholar 

  22. Bull. Am. Ceram. Soc. 66, Gurak, M.R., et al. , (10), 1495 pp. (1987)

    CAS  Google Scholar 

  23. Ceram. Age, 82, Teter, A.R., (8), 30 pp. (1966)

    CAS  Google Scholar 

  24. Am. Ceram. Soc. 65, Evans, A.G., (10), 497 pp. (1982)

    Article  CAS  Google Scholar 

  25. Am. Ceram. Soc. 67, Lange, F., (2), 83 pp. (1984)

    Article  CAS  Google Scholar 

  26. Am. Ceram. Soc., Dynys, W. and Halloran, J.W., (4), 596 pp. (1984)

    Google Scholar 

  27. Bull. Am. Ceram. Soc. 65, Ciftcioghu, M., et al. , (12), 1591 pp. (1986)

    Google Scholar 

  28. Am. Ceram. Soc. 70, Ciftcioghu, M., et al. , (11), C329 pp. (1987)

    Google Scholar 

  29. Bull. Am. Ceram. Soc. 62, Mangels, J.A. and Williams, R.M., (5), 601 pp. (1983)

    CAS  Google Scholar 

  30. Bull. Am. Ceram. Soc. 61, Mizutas, U.C., et al. , (8), 872 pp. (1982)

    Google Scholar 

  31. J. Matl. Sci. 20, Parish, M.V., Garcia, R.R. and Bow, H.K., 996 pp. (1985)

    Article  CAS  Google Scholar 

  32. J. Am. Ceram. Soc. 68, Crosbie, G.M., (3), C83 pp. (1985)

    Article  CAS  Google Scholar 

  33. Bull. Am. Ceram. Soc. 62, Williams, R.M. and Ezis A., (5), 667 pp. (1982)

    Google Scholar 

  34. Bull. Am. Ceram. Soc. 63, Sacks, M.D., (12), 1510 pp. (1984)

    CAS  Google Scholar 

  35. J. Am. Ceram. Soc. 67, Williams, R.M., Ezis, A. and Coverly, J.C., (4), C64 pp. (1984)

    Article  CAS  Google Scholar 

  36. Silicon Nitride Based Ceramics: Fabrication, Processing and Properties; Research and Development Priorities, Davidge, R.W., Riley, F.L., Evans, D.C. and Wordsworth, R.A., AERER 12276, Commercial, CEC, JRC, Petten (May 1986)

    Google Scholar 

  37. Bull. Am. Ceram. Soc. 62, Mangels, J.A. and Williams, R.M., (5), 601 pp. (1983)

    CAS  Google Scholar 

  38. J. Matl. Sci. 12, Edirisinghe, M.J. and Evans, J.R.C., 269 pp. (1987)

    Article  Google Scholar 

  39. J. Am. Ceram. Soc. 66, Lange, F.F., (6), 396 pp. (1983)

    Article  CAS  Google Scholar 

  40. J. Am. Ceram. Soc. 66, Lange, F.F., (6), 402 pp. (1983)

    Google Scholar 

  41. J. Am. Ceram. Soc. 67, Lange, F.F., (2), 83 pp. (1984)

    Article  CAS  Google Scholar 

  42. J. Am. Ceram. Soc. 65, Evans, A.G., (10), 497 pp. (1982)

    Article  CAS  Google Scholar 

  43. J. Am. Ceram. Soc. 67, Dynys, F.W. and Halloran, J.W., (9), 59 pp. (1984)

    Article  Google Scholar 

  44. J. Am. Ceram. Soc. 67, Fegley, B., (6), C113 pp. (1984)

    Article  CAS  Google Scholar 

  45. J. Matl. Sci., 21, Ogihara, T., 2771 pp. (1986)

    Article  CAS  Google Scholar 

  46. Bull. Am. Ceram. Soc. 64, Johnson, D.W., (12), 1597 pp. (1985)

    Google Scholar 

  47. J. Am. Ceram. Soc. 65, Lange, F.F., (2), C23, 1982 and 66 pp., (2) C33 pp. (1983)

    Article  Google Scholar 

  48. J. Am. Ceram. Soc. 64, Singh, V.K., (10), C133 pp. (1981)

    Article  CAS  Google Scholar 

  49. J. Matl. Sci. Letters Meek, T.T. and Blake, R.D., 270–274 pp. (1986)

    Google Scholar 

  50. J. Mat. Sci. 22, Ziegler, G., et al. , 3041–3086 pp. (1987)

    Article  CAS  Google Scholar 

  51. Special Ceramics 5, Brown, R.L., et al. , Ed. Popper, P., BCRA, Stoke on Trent, 345–359 pp. (1972)

    Google Scholar 

  52. British Patent, Godfrey, D.J.

    Google Scholar 

  53. Proc. Brit. Ceramic Soc. 26, Godfrey, D.J., 265–278 pp. (1978)

    CAS  Google Scholar 

  54. Refractory Uses - Practicality of High Technology Ceramics, Fisher, G., Bull. Am. Ceram. Soc. 66, (7) (1987)

    Google Scholar 

  55. Recent Progress in the Use of Monolithic Refractories in Europe., Kuonert, W., Advances in Ceramics, 13, New Developments in Monolithic Refractories, Ed. Fisher, R.E., The Am. Ceram. Soc., Columbus, Ohio (1985)

    Google Scholar 

  56. Bull. Am. Ceram. Soc., 64, Leshkivich, C.J. and Crayton, P.M., 684–86 pp. (1985)

    CAS  Google Scholar 

  57. Bull. Am. Ceram. Soc. 64, McCoy, J.K., (9), 1240–49 pp. (1985)

    CAS  Google Scholar 

  58. Werkstofftech., JU, Ziegler, G., 189 pp. (1983)

    Google Scholar 

  59. Sci. Ceram. 11, Heinrich, J.J. and Bbhmer, M., 439 pp. (1981)

    CAS  Google Scholar 

  60. US Congress Office of Technology Assessment, OTA-TM-E-32, September (1986)

    Google Scholar 

  61. D.W. Johnson, Jr., “Non-conventional powder preparation techniques”, Am. Ceram. Soc. Bull., 60, (2), pp. 221–224, 243 (1981).

    CAS  Google Scholar 

  62. A. Kato, “Study on powder preparation in Japan”, Am. Ceram. Soc. Bull. 66 (4), pp. 647–649 (1987).

    CAS  Google Scholar 

  63. M.P. Harmer and R.J. Brook, “Fast Firing – Microstructural Benefits”, J. Brit. Ceram. Soc. 80 (5), pp. 147–148 (1981).

    CAS  Google Scholar 

  64. F. Cambier, “Raw materials available for conventional processing of engineering ceramics : alumina and silicon nitride powders”, Proc. Advanced Ceramics pp. 20–36, Ed. J.S. Moya and S. de Aza, Soc. Esp. Ceram. Vidr. Arganda del Rey - Madrid, Spain (1986).

    Google Scholar 

  65. F.F. Lange, “Sinterability of Agglomerated Powders”, J. Am. Ceram. Soc. 67 (2), pp. 83–89, 1984.

    Article  CAS  Google Scholar 

  66. A. Leriche, V. Vandeneede, D. Libert, F. Cambier, “Powder Characterization and Optimization of Fabrication and Processing of Silicon-based Engineering Ceramics”, Final Report Contract SUT 117-B (RS). Commission of the European Communities. Substitution and Materials Technologies and Ceramics. July 1986.

    Google Scholar 

  67. E. Rothman, J. Stitt and H.K. Bowen, “A Look at Ceramic Powder Production Processes – Old and New”, Ceramic Industry, pp. 24–29, May 1985.

    Google Scholar 

  68. “Synthesis of Ceramics by New Techniques” Special Issue of Yogyo-Kyokai-Shi, Vol. 95, N° 1, 1987.

    Google Scholar 

  69. “Production Process and Characteristics of High Purity Alumina”, S. Horikiri, pp. 23–31, F.C. Annual Report 1986, edited by Japan Fine Ceramics Association.

    Google Scholar 

  70. Kohler, W., Aluminium 51, 244–250 pp. (1975)

    Google Scholar 

  71. Renton, W.J., (editor), American Institute of Aeronautics and Astronautics, New York

    Google Scholar 

  72. Riewald, P.G., Kreuger, W.H. and Dhingra, A.K., US Patent 4,012,204 (1977)

    Google Scholar 

  73. Willis, T.C., White, J., Jordan, R.M. and Hughes, I.R., presented at Conf. on Solidification Processing held in Sheffield (1987)

    Google Scholar 

  74. Nair, S.V., Tien, J.K. and Bates, R.C., International Metals Reviews 30, 275–290 pp. (1985)

    CAS  Google Scholar 

  75. Mykura, N., presented at Institute of Metals Conference, Metal Matrix Composites: Structure & Property Assessment, London, November (1987)

    Google Scholar 

  76. Clyne, T.W., in Proc. Sixth International Conference on Composite Materials, Eds. Matthews et al, Elsevier Applied Science, London, vol. 2 (2)275-(2)286 pp. (1987)

    Google Scholar 

  77. Van Hille, D., Bengtsson, S. and Warren, R., submigged for publication in Composites Science and Technology

    Google Scholar 

  78. Winsa, E.A., Eds. Hack adn Amateau, Met. Soc. AIME., Warrendale, USA, 283–299 pp. (1983)

    Google Scholar 

  79. Warren, R., Larsson, L.O. and Garvare, T., Composites 10, 121–125 pp. (1979)

    Article  CAS  Google Scholar 

  80. Lundberg, R., Nyberg, B., Willander, K., Persson, M. and Carlsson, R., Composites, 18 (2) 125–127 pp. (1987)

    Article  CAS  Google Scholar 

  81. Inoue, S., Niihara, K., Uchiyama, T. and Hirai, T., Proc. Int. Conf. Ceramic Mater. Components for Engines, DKG, ed. Bunk., W. and Hausner, H., 609-617 (1986)

    Google Scholar 

  82. Clegg, W.J., Alford, N.McN. and Birchall, J.D., Proc. Int. Conf. Engineering with Ceramic, London, in press (1986)

    Google Scholar 

  83. Tiegs, T.N. and Becher, P.F., Am. Ceram. Soc. Bull., 66 (2), 339–342 pp. (1987)

    CAS  Google Scholar 

  84. Lundberg, R., Nyberg, B., Williander, K., Persson, M. and Carlsson, R., Proc. First Int. Conf. on HIP, Lulea, Sweden, June in press (1987)

    Google Scholar 

  85. Starr, T.L. and Harris, J.N., as ref. (2), 217-224 pp.

    Google Scholar 

  86. Pujai, V.K., Willkesn, C.A. and Corbin, N.D., presented at Am. Ceram. Soc. 89th Ann. Meet., abstr. 37-C-87 April (1987)

    Google Scholar 

  87. Nagel, A., Hoffman, J., Greil, P. and Petzow, G., as ref. (7), abstr. 38-C-87

    Google Scholar 

  88. Hoffmann, M.J., Greil, P. and Metzow, G., Proc. Int. Conf. Science of Ceramics 14, Canterbury, England, in press (1987)

    Google Scholar 

  89. Becher, D.F., Tiegs, T.N., Ogle, J.C. and Warwick, W.H., 4th Int. Symp. Fract. Mech. of Ceramics, Blacksburg, USA (1985)

    Google Scholar 

  90. Kageyama, K. and Chou, T.W., Proc. ICCM VI & ECCM 2, Elsevier, Ed. Matthews, F.L., et al. , 2.60-2.69 pp. (1987)

    Google Scholar 

  91. Cristin, F., Naslain, R. and Bernard, C., Proc. 7th Int. Conf. CVD, Ed. Sedwick, T.O. & Lydin, H., Electrochem. Soc., Princeton, USA, 499 pp. (1979)

    Google Scholar 

  92. Rossignol, J.Y., Quenisset, J.M. and Naslain, R., Composites, 18 (2) 135–144 pp. (1987)

    Article  CAS  Google Scholar 

  93. Walker, Jr., B.E., et al. , Am. Ceram. Soc. Bull., 62, (8), 916–923 pp. (1983)

    CAS  Google Scholar 

  94. Fizer, E. and Gadow, R., Am. Ceram. Soc. Bull., (2), 326–335 pp. (1986)

    Google Scholar 

  95. Pierre, A.C., Uhlmann, D.R. and Hordonneau, A., Rev. Int. Hautes Temp. Refract., 23, (1), 29–35 pp. (1986)

    CAS  Google Scholar 

  96. Fischbach, D.B. and MacLaren, D., NASA-Report, DOE ET 13389-T1 (1982)

    Google Scholar 

  97. Lundberg, R., Pompe, R. and Carlsson, R., As ref. 11, 2.33-2.39 pp. (1987)

    Google Scholar 

  98. Krlkke, R.H., Proc. Conf. “Behaviour of Joints in High Temperature Materials”, CEC, JRC Petten Establishment, Pub. Applied Science Publishers, UK, 1982, pp. 49-57?

    Google Scholar 

  99. Williams, J.A., idem, pp. 187-212.

    Google Scholar 

  100. Grunling, H.W. and Schneider, K., idem, pp. 5-43.

    Google Scholar 

  101. Jeal, R.H. and Gupta, S., Proc. Conf. “International Gas Turbine Congress”, Tokyo, Japan, Oct. 1987, pp. III-279-285.

    Google Scholar 

  102. “Metallurgy of Welding”, Lancaster, J.F., Allen & Unwin, London, 3rd Edition, (1980).

    Google Scholar 

  103. Davin, A. et al. , vide Ref. 1, pp. 87-110.

    Google Scholar 

  104. Shoemaker, L.E., Proc. Conf. “Advances in Welding Science & Technology”, ASM, Gatlinburg, USA, May 1986, pp. 371-377.

    Google Scholar 

  105. David, S.A. et al. , Weld. J., 65, 4, April 1986, pp. 93S–98S.

    Google Scholar 

  106. Christensen, J. and Sheward, G.E., vide Ref. 1, pp. 117-161.

    Google Scholar 

  107. Houlcroft, P.T., “Welding Processes”, Pub. Cambridge University Press, UK, (1967).

    Google Scholar 

  108. Cary, H. and Barhorst, S., vide Ref. 7, pp. 783-794.

    Google Scholar 

  109. Fidler, R., CEGB Report TPRD/M/1583/R86, Aug. 1986.

    Google Scholar 

  110. Ibid, CEGB Report TPRD/M/1558/R86, March 1986.

    Google Scholar 

  111. Gooch, R.G., vide Ref. 1, pp. 167-180.

    Google Scholar 

  112. Kelly, T.J., Proc. Conf. “Trends in Welding Research in the United States”, ASM, New Orleans, USA, Nov. 1981, pp. 471-485.

    Google Scholar 

  113. Santella, M. and David, S.A., Weld. J., 65, 5, May 1986, pp. 129S–137S.

    Google Scholar 

  114. Moore, T.J. and Glasgow, T.K., Weld J., 64, 8, Aug. 1985, pp. 219S–226S.

    Google Scholar 

  115. Spinat, R. and Honnorat, Y., Proc. Conf. “High Temperature Alloys for Gas Turbines and Other Applications”, Liege, Belgium, Oct. 1986, D. Reidel Publising Co, Holland, pp. 151.

    Google Scholar 

  116. Haufler, G. et al. , idem, pp. 8001.

    Google Scholar 

  117. Szekely, J., vide Ref. 7, pp. 3-14.

    Google Scholar 

  118. Goldak, J.A. et al. , Met. Trans. B., 15B, 2, June 1984, pp. 299–305.

    Article  Google Scholar 

  119. Alberry, P.J. et al. , Met. Tech., 1, Jan. 1983, pp. 28–38.

    Google Scholar 

  120. Duvall, D.S. et al. , Weld. J., 53, 4, April 1974, pp. 203S–214S.

    Google Scholar 

  121. Funamoto, T. et al. , Quart. J. Jap. Weld. Soc., 4, Nov. 1985, pp. 881–886.

    Article  Google Scholar 

  122. Jahnke, B. and Dannhauser, K., vide Ref. 18, pp. 175.

    Google Scholar 

  123. Bucklow, I.A., Annual Report No. 4, (1986), COST 501, Project UK5.

    Google Scholar 

  124. Anon, “Welding in Japan ’86”, Ed. Baba, A., Sampo Publications Inc., Japan, pp. 80-86.

    Google Scholar 

  125. Ibid, idem, pp. 22-28.

    Google Scholar 

  126. Derby, B. and Wallach, E.R., Met. Sci., 1, Jan. 1982, pp. 49–56.

    Google Scholar 

  127. Devletian, J.H., Weld. J., 66 6, June 1987, pp. 33–39.

    Google Scholar 

  128. Farrer, R.A., Proc. Conf. “Stainless Steels ’84”, Gotherburg, Sweden, (1984), Pub. Inst, of Metals, London, UK, pp. 336-342.

    Google Scholar 

  129. Lefebvre, J. et al. , idem, pp. 330-335.

    Google Scholar 

  130. Gooch, D.J. and Kimmins, S.T., Proc. Third Int. Conf. “Creep and Fracture of Engineering Materials and Structures”, Swansea, UK, April 1987, Inst, of Metals, pp. 689-703.

    Google Scholar 

  131. Williams, J.A., idem, pp. 721-740.

    Google Scholar 

  132. Nicholson, R.D. et al. , Proc. Conf. “Dissimilar Welds in Fossil-Fired Boilers”, New Orleans, USA, (1985), EPRI, CSD-3623.

    Google Scholar 

  133. Various, Proc. Conf. “Joining Dissimilar Metals”, EPRI, Pittsburg, USA, Aug. 1982.

    Google Scholar 

  134. Mizuhara, H. and Huebel, E., Weld. J., 65, Oct. 1986, pp. 43–51.

    CAS  Google Scholar 

  135. Nicholas, M.G., Brazing & Soldering, No. 10, Spring 1986, pp. 10.

    Google Scholar 

– From AGARD Congress Materials substitution and recycling 1983

  1. New developments in recycling, Norton, R.C. and Keneham, O.B.

    Google Scholar 

  2. Effets des traitements sous vide sur devolution des teneurs en elements traces dans les superalliages, Wadier, J.P. and Morlet, J.

    Google Scholar 

– From 7th ICVM Tokyo 1982

  1. Production of ultra low nitrogen steels and alloys in vacuum induction, Katayman, H. and Nakamura, Y.

    Google Scholar 

  2. Metallurgical and plan design aspects of vacuum distillation processes, Ellebrecht, C.

    Google Scholar 

  3. Study of physiochemical processes in plasma arc remelting of the surface layer of ingots and billets, Latash, Y.V. et al.

    Google Scholar 

  4. Progress in the vacuum (VIM, VAR) melting of high performance alloys, Sutton, W.H.

    Google Scholar 

  5. New developments in electron-beam melting, Shiller, S. et al.

    Google Scholar 

– From vacuum metallurgy conference 1984

  1. Electron-beam cold hearth refining furnace for the production of nickel and cobalt base superalloys, Hunt, C.D.A. et al.

    Google Scholar 

  2. A mechanisms of white spot formation in remelted ingots, Wadice, J.F. et al.

    Google Scholar 

  3. Chemistry and structure control in remelted superalloys ingot, Cordy, J.T. et al.

    Google Scholar 

– From High Temperature Alloys for Gas Turbines, Liege Meeting 1978, D. Coutsouradis et al. Applied Science Publishers London 1978

  1. Quality of casting of superalloys, Bachelet, E. and Lesoult, G.

    Google Scholar 

  2. Progress in advanced directionally solidified and eutectic high temperature alloys, Drapier, J.M.

    Google Scholar 

– From Superalloys 1980 Seven Springs meeting, Tien, J.K. et a l. American Society for Metal 1980

  1. Thermomechanical processing of Haynes Alloy 1988 sheet to improve creep strength, Klarston, D.L.

    Google Scholar 

  2. The development of single crystal superalloy turbine blades, Gell, M. et al.

    Google Scholar 

  3. Development of low cost directionally solidified turbine blades, Hoppin, G.S. et al.

    Google Scholar 

  4. Influence of the chemical composition of nickel base superalloys on their solidification behaviour and foundry performance, Ouichou, L. et al.

    Google Scholar 

  5. The metallurgical aspects of hot isostatically pressed superalloy casting, Antony, K.C. adn Radavich, J.F.

    Google Scholar 

  6. Hiping various precision cast engine components in nickel base superalloys. Lamberigts, M. et al.

    Google Scholar 

– From High Temperature Alloys for Gas Turbines, Liege. Meeting 1982, R. Brunetaud et al, D. Reidel Publishing Cy

  1. Superalloy technology to-day and to-morrow, Versnijder, F.L.

    Google Scholar 

  2. VADER a new melting and casting technology, Boesh, W.J. et al.

    Google Scholar 

  3. The evolution of the forging process on discs, Coyne, J.E. and Couts Jr., W.H.

    Google Scholar 

  4. The relationship between structure, properties and processing in powder metallurgy superalloys, Davidson, J.H. and Aubin, C.

    Google Scholar 

  5. Precision casting of turbine blades and vanes, Drafner, J.M.

    Google Scholar 

  6. Microporosity formation in investment castings of nickel base superalloys: metallurgical effects, thermal modelling and foundry assessment, Ouichou, L. et al.

    Google Scholar 

– From superalloys P4, Seven Springs meeting M. Gell et al. Metallurgical Society of AIME

  1. Development of a conventional fine grain casting process, Would, M. and Benson, H.

    Google Scholar 

  2. Cost effective single crystals, Goulette, M.J. et al.

    Google Scholar 

  3. Superalloy powder processing, properties and turbine disc applications, Chang, D.R. et al.

    Google Scholar 

  4. Fabricated RSR vane manufacturing technology, Baker, S.H. et al.

    Google Scholar 

  5. Liquid phase sintering of nickel base superalloys, Jeandin, H. et al.

    Google Scholar 

  6. Superalloy melting and cleanliness evaluation, Shamblin, C.F.

    Google Scholar 

– From High Temperature Alloys for Gas Turbines and other Applications, Liege Meeting 1986, W. Betz et al. D. Reidel Publishing Cy

  1. Recent development and potential of single crystal superalloys for advance turbine blades, Khan, T.

    Google Scholar 

  2. Foundry performance and reverted alloys for turbine blades, Ford, D.A. et al.

    Google Scholar 

  3. Structure, processing of ODS superalloys, Singer, R and Artz, E.

    Google Scholar 

  4. Forging of high temperature alloys for gas turbines, Rydstad, H. et al.

    Google Scholar 

  5. Automated electron beam melting for superalloy cleanliness evaluation, Jarrett, R.N., Conference on Electron Beam Melting and Refining, Reno 1984, Bakish Materials Corporation.

    Google Scholar 

  6. Evaluation de la proprete des materiaux de metallurgie des poudres pour disques de turbomachines, Raison, G., Materiaux et techniques, decembre 1987.

    Google Scholar 

  7. Mechanical behaviour and processing of DS and single crystal superalloys, Khan, T. et al, Journal of Metals, July 1981.

    Google Scholar 

  8. Metal forming and the finite element method, past and future, Kobayaski, S., Advanced Technology of plasticity 19824, vol 2.

    Google Scholar 

  9. A general purpose KEM code for simulation of non isothermal forming processes, Wu, W.T. and Oly, S.I., NAMRC XIII Conference 1985.

    Google Scholar 

  10. Finite element analysis of shaped lead-tin disc forgings, Germain, Y. et al, NXJMIFORM Conference 1986.

    Google Scholar 

  11. Usinabilite des alliages refractaires, Vigneau, J., Rapport CETIM 1983.

    Google Scholar 

  12. Influence of the microstructure of the composite ceramics tools on their performance when machining superalloys, Vigneau, J., annals of CIR V 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 ECSC, EEC, EAEC, Brussels and Luxembourg

About this chapter

Cite this chapter

Brunetaud, R. et al. (1989). Materials Production. In: Bullock, E., Brunetaud, R., Condé, J.F., Keown, S.R., Pugh, S.F. (eds) Research and Development of High Temperature Materials for Industry. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1145-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1145-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7008-9

  • Online ISBN: 978-94-009-1145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics