Skip to main content

Reaction-Sintered Mullite-Zirconia Composites: Mechanism and Properties

  • Chapter

Abstract

It is well known that zirconia additions to mullite-based refractories, either fusioncast or conventionally sintered, improve their ability to withstand corrosion by molten slags and glasses. Special attention has been directed to reaction-sintering prepared mullite-zirconia composites from zircon sand and alumina, but the simplicity of the process can be somewhat overcast by the difficulty in establishing the mechanism through which reaction+sintering occur.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mazdiyasni, K.S. and Brown, L.M., “Synthesis and Mechanical Properties of Stoichiometric Aluminum Silicate (Mullite)”, J. Am. Ceram. Soc. 55[11] 548–52 (1972)

    Article  CAS  Google Scholar 

  2. Aramaki, S. and Roy, R., “Revised Phase Diagram for the System Al2O3-SiO2”, J. Am. Ceram. Soc. 45[5] 229–42 (1962)

    Article  CAS  Google Scholar 

  3. Klug, F.J., Prochazka, S. and Doremus, R.H., “Alumina-Silica Phase Diagram in the Mullite Region”, J. Am. Ceram. Soc. 70[10] 750–9 (1987)

    Article  CAS  Google Scholar 

  4. Mah, T. and Mazdiyasni, K.S., “Mechanical Properties of Mullite”, J. Am. Ceram. Soc. 66[10] 699–703 (1983)

    Article  CAS  Google Scholar 

  5. Kanzani, S., Kabata, H., Kumazawa, T. and Ohta, S. “Sintering and Mechanical Properties of Stoichiometric Mullite”, J. Am. Ceram. Soc. 68[1] C6–7 (1985)

    Google Scholar 

  6. Ghate, B.B., Hasselman, D.P.H. and Spriggs, R.M., “Synthesis and Characterization of High Purity, Fine Grained Mullite”, Am. Ceram. Soc. Bull. 52[9] 670–2 (1973)

    CAS  Google Scholar 

  7. Claussen, H. and Jahn, J., “Mechanical Properties of Sintered, In Situ Reacted Mullite-Zirconia Composites”, J. Am. Ceram. Soc. 63[3-4] 228–9 (1980)

    Article  CAS  Google Scholar 

  8. Di Rupo, E,, Gilbart, E., Carruthers, T.H. and Brook, R.J., “Reaction Hot-Pressing of Zircon-Alumina Mixtures”, J. Mat. Sci. 14 705–11 (1979)

    Article  Google Scholar 

  9. Anseau, M.R., Leblud, C. and Cambier, F., “Reaction Sintering (RS) of Zircon-based Powders as a Route for Producing Ceramics Containing Zirconia with Enhanced Properties”, J. Mat. Sci. Lett. 2 366–70 (1983)

    Article  CAS  Google Scholar 

  10. Pena, P., Moya, J.S., de Aza, S., Cardinal, E., Cambier, F., Leblud, C. and Anseau, M.R., “Effect of Magnesia Additions on the Reaction Sintering of Zircon/Alumina Mixtures to Produce Zirconia Toughened Mullite”, J. Mat. Sci. Lett. 2 772–4 (1983)

    Article  CAS  Google Scholar 

  11. Wallace, J.S., Petzow, G. and Claussen, H., “Microstructure and Property Development of in situ-reacted Mullite-ZrO2 Composites”, Advances in Ceramics, vol. 12: “Science and Technology of Zirconia II”, The Am. Ceram. Soc. inc., Columbus, Ohio, 1983, p, 436–43

    Google Scholar 

  12. Prochazka, J., Wallace, J.S. and Claussen, I., “Microstructure of Sintered Mullite-Zirconia Composites”, J. Am. Ceram. Soc. 66 C–125 (1983)

    Article  Google Scholar 

  13. Rincon, J.M. and Moya, J.S., “Microstructural Study of Toughened ZrO2/Mullite Ceramic Composites Obtained by Reaction Sintering with TiO2 Additions”, Br. Ceram. Trans. J. 85 201–6 (1986)

    CAS  Google Scholar 

  14. Pena, P., Miranzo, P., Moya, J.S. and de Aza, S., “Multicomponent Toughened Ceramic Materials Obtained by Reaction Sintering, part 1 - System ZrO2-Al2O3-SiO2-CaO”, J. Mat. Sci. 20 2011–22 (1985)

    Article  CAS  Google Scholar 

  15. Miranzo, P., Pena, P., Moya, J.S. and de Aza, S., “Multicomponent Toughened Ceramic Materials Obtained by Reaction Sintering, part 2 - System ZrO2-Al2O3-SiO2-MgO”, J. Mat. Sci. 20 2702–10 (1985)

    Article  CAS  Google Scholar 

  16. Melo, M.F., Moya, J.S., Pena, P. and de Aza, S., “Multicomponent Toughened Ceramic Materials Obtained by Reaction Sintering, part 3 - System ZrO2-Al2O3-SiO2-TiO2”, J. Mat. Sci. 20 2711–8 (1985)

    Article  CAS  Google Scholar 

  17. Orange, G., Fantozzi, G., Cambier, F., Leblud, C., Anseau, M. and Leriche, A., “High Temperature Mechanical Properties of Reaction Sintered Mullite-Zirconia and Mullite-Alumina-Zirconia Composites”, J. Mat. Sci. 20 2533–40 (1985)

    Article  CAS  Google Scholar 

  18. de Portu, G. and Henney, J.W., “The Microstructure and Mechanical Properties of Mullite-Zirconia Composites”, Br. Ceram. Trans. J. 83 69–72 (1984)

    Google Scholar 

  19. Moya, J.S. and Osendi, M.I., “Microstruture and Mechanical Properties of Mullite-ZrO2 Composites”, J. Mat. Sci. 19 2904–14 (1984)

    Article  Google Scholar 

  20. Boch, P. and Giry, J.P., “Preparation and Properties, of Reaction-Sintered Mullite-ZrO2 Ceramics”, Mat. Sci. Eng. 71 39–48 (1985)

    Article  CAS  Google Scholar 

  21. Paulus, M., Laher-Lacour, F., Dugleux, P. and Dubou, A., “Defects and Transitory Liquid Phase Formation During the Sintering of Mixed Powders”, Br. Ceram. Trans. J. 82 90–8 (1983)

    CAS  Google Scholar 

  22. Cambier, F., Baudin de la Lastra, C. and Pilate, P., “Formation of Microstructural Defects in Mullite-Zirconia and Mullite-Alumina-Zirconia Composites Obtained by Reaction Sintering of Mixed Powders”, Br. Ceram. Trans. J. 83 196–200 (1984)

    CAS  Google Scholar 

  23. Lange, L., “Transformation Toughening, part 1 - Size Effects Associated with the Thermodinamics of Constrained Transformations”, J. Mat. Sci. 17 225–34 (1982)

    Article  CAS  Google Scholar 

  24. Heuer, A.H., “Transformation Toughening in ZrO2 Containing Ceramics”, J. Am. Ceram. Soc. 70[10] 689–98 (1987)

    Article  CAS  Google Scholar 

  25. Garvie, R.C. and Nicholson, P.S., “Phase Analysis in Zirconia Systems”, J. Am. Ceram. Soc. 55[6] 303–5 (1972)

    Article  CAS  Google Scholar 

  26. Paulus, M., “Relationship between Densification, Crystal Growth and Mechanisms of Formation in Ceramics”, Mat. Sci. Res. vol. 6: “Sintering and Related Phenomena”, ed. G.C. Kuczynski, 1973, p. 236–40

    Google Scholar 

  27. Emiliano, J.V. and Segadães, A.M., to be published

    Google Scholar 

  28. Di Rupo, E. and Anseau, M.R., “Solid State Reactions in the ZrO2. SiO2-αAl2O3 System”, J. Mat. Sci. 15 114–8 (1980)

    Article  Google Scholar 

  29. Fichmeister, H. and Grinvall, G., “Ostwald Ripening - A Survey”, Mat. Sci. Res. vol. 6: “Sintering and Related Phenomena”, ed. G.C. Kuczynski, 1973, p. 119–49

    Google Scholar 

  30. Leriche, A., Cambier, F. and Brook, R.J., “Study of Some Factors Influencing the Microstructural Development of Mullite-Zirconia Composites Obtained by Reaction-Sintering”, Br. Ceram. Proceedings, Special Ceramics 8, 1986, p. 167–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Emiliano, J.V., Segadães, A.M. (1989). Reaction-Sintered Mullite-Zirconia Composites: Mechanism and Properties. In: Meriani, S., Palmonari, C. (eds) Zirconia’88. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1139-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1139-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7005-8

  • Online ISBN: 978-94-009-1139-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics