Skip to main content

Indentation Creep in Zirconia Ceramics Between 290 K and 1073 K

  • Chapter
Book cover Mechanics of Creep Brittle Materials 1

Abstract

The results are reported of a study of the temperature and time response of yttria stabilised cubic zirconia, both in polycrystalline and single crystal form, to Knoop indentations in the ranges 290–1073 K and 10–10 000 s. The single crystal data lie consistently above the polycrystalline results. Indentation creep is observed at all temperatures with the rate of creep increasing at higher temperatures. The results are analysed and discussed in terms of the available models of indentation creep. A transition in deformation mechanism occurs at approximately 650 K for both materials. The activation energies and stress exponents were determined as 36 and 273 kJ/mol, and 40 and 20 for the single crystal, and 109 and 247 kJ/mol, and 53 and 29 for the polycrystalline below and above 600 K, respectively. At the higher temperatures, deformation is pipe diffusion dislocation climb controlled, whilst at the lower temperatures dislocation glide is the rate determining process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parr, N.L., Martin, G.F. and May, E.R.W., Preparation, microstructure and mechanical properties of silicon nitride. In Special Ceramics 1960. ed., P. Popper, Haywood, London, 1960, p. 120.

    Google Scholar 

  2. Edington, J.W., Rowcliffe, D.J. and Henshall, J.L., Powder Metallurgical Review 8: The mechanical properties of silicon nitride and silicon carbide. Powder Met. Int., 1975, 2, 82–96 & 136–147.

    Google Scholar 

  3. Garvie, R.C., Hannink, R.H and Pascoe, R.T., Ceramic steel?, Nature, 1975, 258, 703–704.

    Article  CAS  Google Scholar 

  4. Claussen, N. Strengthening strategies for Zr02 ceramics at high temperatures. Mat. Sci. Eng., 1985, 71, 23–39.

    Article  CAS  Google Scholar 

  5. Tabor, D., Indentation Hardness and its measurement: some cautionary comments. In Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, eds., P.J. Blau and B.R. Lawn, American Society for Testing and Materials, Philadelphia, 1986, pp. 129–159.

    Google Scholar 

  6. Bishop, R.F., Hill, R. and Mott, N.F., The theory of indentation hardness tests. Proceedings of the Physical Society (U.K.), 1945, 57, 147–159.

    Article  CAS  Google Scholar 

  7. Marsh, D.M., Plastic Flow in Glass. Proc. Roy. Soc. (London), 1964, A279, 420–435.

    Google Scholar 

  8. Johnson, K.L., The correlation of indentation experiments. J. Mech. Phys. Sol., 1970, 18, 115–126.

    Article  Google Scholar 

  9. Chiang, S.S., Marshall, D.B. and Evans, A.G., The response of solids to elastic plastic indentation. I. stresses and residual stresses. Journal of Applied Physics, 1982, 53, 298–311.

    Article  CAS  Google Scholar 

  10. Mulhearn, T.O. and Tabor, D., Creep and Hardness of metals: A physical study. J. Inst. Met., 1960–61, 89, 7–12.

    CAS  Google Scholar 

  11. Atkins, A.G., Silverio, A. and Tabor, D., Indentation hardness and the creep of solids. J. Inst. Met., 1966, 94, 369–378.

    CAS  Google Scholar 

  12. Morgan, J.E., Indentation hardness and indentation creep in solids at temperatures below 0.5 T m. Ph.D. Dissertation, University of Exeter, Exeter, U.K., 1976.

    Google Scholar 

  13. Sherby, O.D. and Armstrong, P.E., Prediction of activation energies for creep and self diffusion from hot hardness data. Metall. Trans., 1971, 2, 3479–3484.

    CAS  Google Scholar 

  14. Roebuck, B. and Almond, E.A., Equivalence of indentation and compressive creep tests on a WC/Co hardmetal. J. Mat. Sci. Letters, 1982, 1, 519–522.

    Article  CAS  Google Scholar 

  15. Chu, S.N.G. and Li, J.C.M., Impression creep: A new creep test. J. Mat. Sci., 1977, 12, 2200–2208.

    Article  CAS  Google Scholar 

  16. Ingel, R.P., Structure-mechanical property relationships for single crystal yttrium oxide stabilised zirconium oxide. Ph.D. Dissertation, Catholic University of America, Washington, D.C., 1982; University Microfilms International (Ann Arbor, MI) Order No. 83–02474.

    Google Scholar 

  17. Sato, T., Ohtaki, S. and Endo, T., Transformation of yttria doped tetragonal doped polycrystals by annealing under controlled humidity conditions. J. Amer. Ceram. Soc., 1985, 68, C320-C322.

    Article  CAS  Google Scholar 

  18. Kandil, H.M., Greiner, J.D. and Smith J.F., Single-crystal elastic constants of yttria-stabilised zirconia in the range 20° to 700°C. J. Amer. Ceram. Soc., 1984, 67, 341–346.

    Article  CAS  Google Scholar 

  19. Evans, P.S.E., creep in yttria- and scandia-stabilised zirconia. J. Amer. Ceram. Soc., 1970, 53, 365–369.

    Article  CAS  Google Scholar 

  20. Seltzer, M.S. and Talty, P.K., High-temperature creep of Y2O3 -stabilised ZrO2. J. Amer. Ceram. Soc., 1975, 58, 124–130.

    Article  CAS  Google Scholar 

  21. Rutman, D.S., Maurin, A.F., Toropov, Yu.S., Pliner, S.M., Taksis, G.A., Dauknis, V.I., Kazakyavichus, K.A., Peras, A.Ya., Martinaiten, V.I. and Yakushka, V.I., Study of the creep of constructional zirconia ceramics at high temperatures. Refractories (U.S.A.), 1980, 21, 212–215.

    Article  Google Scholar 

  22. Wakai, F., Sakaguchi, S. and Matsuno, Y., Superplasticity of yttria-stabilised tetragonal Zr02 polycrystals. Advanced Ceramic Materials, 1986, 1, 259–263.

    CAS  Google Scholar 

  23. Dimos, D. and Kohlstedt, D.L., Diffusional creep and kinetic demixing in yttria-stabilised zirconia. J. Amer. Ceram. Soc., 1987, 70, 531–536.

    Article  CAS  Google Scholar 

  24. Fehrenbacher, L.L., Bailey, F.P. and McKinnon, N.A., Compressive creep of yttria rare earth stabilised zirconia storage heater refractories. SAMPE Quarterly, 1971, 2, 48–60.

    Google Scholar 

  25. Guillou, M., Carter, G.C., Henshall, J.L. and Hooper, R.M., Anisotropy of hardness and fracture in single crystal calcia and yttria stabilised cubic zirconia. in preparation.

    Google Scholar 

  26. Dominguez-Rodriguez, A., Lagerhof, K.P.D. and Heuer, A.H., plastic deformation and solid-solution strengthening of yttria stabilised zirconia. J. Amer. Ceram. Soc., 1986, 69, 281–284.

    Article  CAS  Google Scholar 

  27. Subbarao, E.C. and Maiti, H.S., Oxide electrolytes with fluorite structure. In Progress in Solid Electrolytes, eds. T.A. Wheat, A. Ahmad and A.K. Kuriakose, Energy, Mines and Resources, Ottawa, Canada, 1983, pp. 281–312.

    Google Scholar 

  28. Oishi, Y., Ando, K. and Sakka, Y., Lattice and grain-boundary diffusion coefficients of cations in stabilised zirconias. In Advances in Ceramics Vol. 7, eds., M.F. Yan and A.H. Heuer, American Ceramics Society, Columbus, OH, 1983, pp. 208–219.

    Google Scholar 

  29. Frost, H.J. and Ashby, M.F., Deformation-Mechanism Maps The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982, pp. 93–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Henshall, J.L., Carter, G.M., Hooper, R.M. (1989). Indentation Creep in Zirconia Ceramics Between 290 K and 1073 K. In: Cocks, A.C.F., Ponter, A.R.S. (eds) Mechanics of Creep Brittle Materials 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1117-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1117-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6994-6

  • Online ISBN: 978-94-009-1117-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics