Purification of Polymers by Supercritical Fluid Extraction in Processing Machines

  • L. A. Kleintjens


Many organic (low-molecular) components can be dissolved in a variety of simple fluids under near- or supercritical thermodynamic conditions. The phase behaviour a such mixtures is nowadays well-understood and several extraction procedures based on supercritical dissolution processes are on stream. Laboratory equipment, as well as bench-scale units for such high-pressure research, are commercially available and thermodynamic models have been developed that can direct and correlate the experimental research.

The high diffusion speed of small molecules (even under nearcritical conditions) in comparison with ordinary solvents and the dissolution selectivity of such systems can be used in the extraction of low-molecular organic products out of amorphous polymeric materials. Some results for acrylonitrile containing (co-) polymers/blends and thermoplastic polymers like ethylene-propylene-diene terpolymers are reported.

First extruder experiments show that this technique can be successfully applied to polymers in processing machines.


Processing Machine Phase Behaviour Supercritical Fluid Extraction Longe Extraction Time EPDM Rubber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Hannay and J. Hogarth, Proc. R. Soc. London 29, 324 (1879).CrossRefGoogle Scholar
  2. 2.
    e.g. G.A.M. Diepen and F.E.C. Scheffer, J. Am. Chem. Soc. 70, 4081, 4085 (1948).CrossRefGoogle Scholar
  3. 3.
    G.M. Schneider, E. Stahl, G. Wilke, ‘Extraction with supercritical gases’, Weinheim, W-Germany, Verlag Chemie (1980).Google Scholar
  4. 4.
    M. McHugh, Ber. Bunsenges, Phys. Chem. 88 (1984).Google Scholar
  5. 5.
    J.W. Gibbs, Collected Works, Vol. I Dover Publ., Reprint, New York 1961.Google Scholar
  6. 6.
    J.D. van der Waals, Ph. Kohnstamm, ‘Lehrbuch der Thermodynamik’, Barth, Leipzig 1912, Vol. II.Google Scholar
  7. 7.
    H.W. Bakhuis Roozeboom, ‘Die heterogenen Gleichgewichte vom Standpunkte der Phasenlehre’, Vieweg, Braunschweig 1913.Google Scholar
  8. 8.
    G.M. Schneider, Chem. Thermod. Vol. II, Specialist Period. Repts., Chem. Soc. London 1978, p. 105.CrossRefGoogle Scholar
  9. 9.
    P.L. Chueh and J.M. Prausnitz. AIChE J. 13, 1107 (1967).CrossRefGoogle Scholar
  10. 10.
    J.J. Czubryt, M.M. Meyers and J.C. Giddings, J. Phys. Chem. 74, 4260 (1970).CrossRefGoogle Scholar
  11. 11.
    E.U. Franck, Z. Phys. Chem. 6, 23 (1956).Google Scholar
  12. 12.
    G.L. Rössling and E.U. Franck, Ber. Bunsenges. Phys. Chem. 87, 882 (1983).Google Scholar
  13. 13.
    N. Gangoli, Ind. Eng. Chem. Prod. Res. Div. 16, 209 (1977).CrossRefGoogle Scholar
  14. 14.
    J.S. Rowlinson, ‘Liquids and Liquid Mixtures’, 2nd ed. Butterworths, London 1969.Google Scholar
  15. 15.
    I.R. McDonald, ‘Statistical Mechanics’, Vol. I, p. 134, Spec. Period. Reports, The Chem. Society, London 1973.CrossRefGoogle Scholar
  16. 16.
    A.S. Teja and J.S. Rowlinson, Chem. Eng. Sci. 28, 529 (1973).CrossRefGoogle Scholar
  17. 17.
    e.g. J.W. Leach, P.s. Cheppelear and T.W. Leland, Proc. Am. Petrol. Inst. 46, 223 (1966) and AIChE J. 14, 568 (1968).Google Scholar
  18. 18.
    G.A. Mansoori, W.F. Carnahan, K.E. Starling and T.E. Leland, J. Chem. Phys. 54, 1523 (1971).CrossRefGoogle Scholar
  19. 19.
    J.D. Weeks, D. Chandler and H.C. Anderson, J. Chem. Phys. 54, 5237 (1971).CrossRefGoogle Scholar
  20. 20.
    K.E. Gubbins and C.H. Twu, Chem. Eng. Sci. 33, 363, 879 (1978).Google Scholar
  21. 21.
    M.L. McGlashan, K. Stead and C. Warr, Int. Conf. on Chem. Thermod. Vienna 1973, J. Chem. Soc. Faraday II 73, 1889 (1977).CrossRefGoogle Scholar
  22. 22.
    R.L. Scott, Int. Conf. on Chem. Therm., Vienna 1973.Google Scholar
  23. 23.
    D. Peng and D.B. Robinson, Ind. Eng. Chem. Fundam. 15, 59 (1976).CrossRefGoogle Scholar
  24. 24.
    G. Soave, Chem. Eng. Sci. 27, 1197 (1972).CrossRefGoogle Scholar
  25. 25.
    O. Redlich and J.N.S. Kwong, Chem. Rev. 44, 23 (1949).Google Scholar
  26. 26.
    R.T. Kurnik, S.J. Holla and R.C. Reid, J. Chem. Eng. Data 26, 47 (1981).CrossRefGoogle Scholar
  27. 27.
    S. Peter and H. Wenzel, Ber. Bunsenges. Phys. Chem. 76, 331 (1972).Google Scholar
  28. 28.
    M.E. Mackay and M.E. Paulaitis, Ind. Eng. Chem. Fundam. 18, 149 (1979).CrossRefGoogle Scholar
  29. 29.
    A.J. Staverman and J.H. van Santen, Rec. Trav. Chim. 60, 76 and 640 (1941).CrossRefGoogle Scholar
  30. 30.
    P.J. Flory, J. Chem. Phys. 10, 51 (1942); 12, 425 (1944).CrossRefGoogle Scholar
  31. 31.
    M.L. Huggins, Ann. N.Y. Acad. Sci. 43, 1 (1942).CrossRefGoogle Scholar
  32. 32.
    G. Kanig, Kolloid Z. Polym. 190, 1 (1963); 233, 829 (1969).Google Scholar
  33. 33.
    H.G. Killian, Kolloid Z. & Z. Polym. 252, 353 (1974).CrossRefGoogle Scholar
  34. 34.
    I.C. Sanchez and R.H. Lacombe, J. Phys. Chem. 80, 2352 and 2568 (1976).CrossRefGoogle Scholar
  35. 35.
    L.A. Kleintjens, Ph.D. Thesis, Essex Univ. UK, 1979.Google Scholar
  36. 36.
    L.A. Kleintjens, R. van der Haegen and R. Koningsveld in ‘High Pressure Chemistry and Biochemistry’, ASI-Series C197, Reidel Publ. Co. 1987, pag. 157.Google Scholar
  37. 37.
    G. Braun and R. Steiner, Preprints: ‘High Pressure Chem. Engineering’, GVC Symposium Erlangen, W-Germany 1984, pag. 297.Google Scholar
  38. 38.
    Eur. Patent Appl. 183.314.Google Scholar
  39. 39.
    US Patent 4.725.667.Google Scholar
  40. 40.
    Eur. Patent Appl. 233.661.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • L. A. Kleintjens
    • 1
  1. 1.DSM ResearchGeleenThe Netherlands

Personalised recommendations