Thermodynamic Stability of Copolymer Blends

  • William J. Macknight
  • Heung S. Kang
  • Frank E. Karasz
  • Ronald Koningsveld


Liquid-liquid phase diagrams of polymer blends show a large variety in shape and depend very sensitively on average molar mass and molar-mass distribution. If one or both constituents are statistical copolymers phase behavior is still more complex and of surprising subtlety. A mixture of two statistical copolymers based on the same pair of monomers but differing in chemical composition is usually characterized by a maximum tolerable composition difference for the system to remain homogeneous. Mixtures of homopolymers and copolymeys, whether sharing a common repeat unit or not, may show unexpected composition ranges of miscibility within vast areas of virtual immiscibility. Molecular modelling of such phenomena is possible on different levels of sophlstlcation. We restrict the discussion to the rigid lattice model and explore its capability of predicting phase relations with a minimum of a priori knowledge. The Flory-Huggins-Staverman-Scott model represents the simplest version and has a considerable predictive power in locating regions of (im)miscibility in a semiquantitative fashion. For more precise descriptions the model must be amended, either accounting for minute differences In molecular volume or chain length, or using Staverman’s contact statistical treatment.


Chain Length Cloud Point Polymer Blend Ethyl Acrylate Acrylic Copolymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gibbs, J.W., The Scientific Papers, Dover Reprint, New York, Vol.1, 1961.Google Scholar
  2. 2.
    Van der Waals, J.D.and Kohnstamm, Ph., Lehrbuch der Thermodynamik, Barth, Leipzig, Vol II, 1912.Google Scholar
  3. 3.
    Koningsveld, R., Stockmayer, W.H. and Nles, E., Polymer Phase Dlagrams, Oxford University Press, 1988.Google Scholar
  4. 4.
    Ten Brinke, G., Karasz, F.E. and MacKnlght, W.J., Macromolecules, 1983, 16, 1827.CrossRefGoogle Scholar
  5. 5.
    Balazs, A.C., Karasz, F.E., MacKnlght, W.J., Ueda, H. and Sanchez, I.C., Macromolecules, 1985, 18, 2784.CrossRefGoogle Scholar
  6. 6.
    Kambour, R.P.and Bendler, J.T., Macromolecules, 1986, 19, 2679.CrossRefGoogle Scholar
  7. 7.
    Strobl, G.R., Bendler, J.T., Kambour, R.P. and Shultz, A.R., Macromolecules, 1986, 19, 2683.CrossRefGoogle Scholar
  8. 8.
    Voigt-Martin, I.G., Leister, K.-H., Rosenau, R. and Koningsveld, R., J. Polym. Sci., Part B; Polym. Phys., 1986, 24, 723.CrossRefGoogle Scholar
  9. 9.
    McMaster, L.P., Macromolecules, 1973, 6, 760.CrossRefGoogle Scholar
  10. 10.
    Koningsveld, R.; Klelntjens, L.A. in: Polymer Blends and Mixtures, eds., D.J. Walsh, J.S. Higgins and A. Maconnachie, Nijhoff, Dordrecht, 1985, p.89.Google Scholar
  11. 11.
    Onclin, M.H., Klelntjens, L.A. and Koningsveld, R., Brit. Polym. J., 1980, 12, 221.CrossRefGoogle Scholar
  12. 12.
    Koningsveld, R., Adv. Coil. Interf. Sci., 1968, 2, 151.CrossRefGoogle Scholar
  13. 13.
    Staverman, A.J. and Van Santen, J.H., Reel. Trav. Chim., 1941, 60, 76.CrossRefGoogle Scholar
  14. 14.
    Staverman, A.J., Reel. Trav. Chim., 1941, 60, 640.CrossRefGoogle Scholar
  15. 15.
    Huggins, M.L., J. Chem. Phys., 1941, 9, 440.CrossRefGoogle Scholar
  16. 16.
    Hugglns, M.L., Ann. N.Y. Acad. Sci., 1942, 43, 1.CrossRefGoogle Scholar
  17. 17.
    Flory, P.J., J. Chem. Phys., 1941, 9, 660.CrossRefGoogle Scholar
  18. 18.
    Flory, P.J., J. Chem. Phys., 1942, 10, 51.CrossRefGoogle Scholar
  19. 19.
    Scott, R.L., J. Polym. Sci., 1952, 9, 423.CrossRefGoogle Scholar
  20. 20.
    Kang, H.S., MacKnlght, W.J. and Karasz, F.E., Polym. Prepr. ACS, in print.Google Scholar
  21. 21.
    Kollinsky, F.and Markert, G., Makromol. Chem., 1969, 121, 117.CrossRefGoogle Scholar
  22. 22.
    Kollinsky, F.; Markert, G., Adv. Chem. Ser., 1971, No. 99, 325.Google Scholar
  23. 23.
    Koningsveld, R.and MacKnlght W.J., Makromol. Chem., in print.Google Scholar
  24. 24.
    Staverman, A.J., Reel. Trav. Chim., 1937, 56, 885.CrossRefGoogle Scholar
  25. 25.
    Bondi, A., J. Phys. Chem., 1964, 68, 441.CrossRefGoogle Scholar
  26. 26.
    Guggenheim E.A., Mixtures, Clarendon Press, Oxford, 1952.Google Scholar
  27. 27.
    Koningsveld R.and Klelntjens, L.A. Macromolecules, 1985, 18, 243.CrossRefGoogle Scholar
  28. 28.
    Koningsveld R., Klelntjens, L.A. and Leblans-Vinck, A.M., J. Phys. Chem., 1987, 91, 6423.CrossRefGoogle Scholar
  29. 29.
    v.d. Haegen, R., work in progress.Google Scholar
  30. 30.
    v. Opstal, L., work in progress.Google Scholar
  31. 31.
    Koningsveld, R.and Klelntjens, L.A., J. Polym. Sci., Polym. Symp., 1977, 61, 225.Google Scholar
  32. 32.
    Staverman, A.J. In Integration of Fundamental Polymer Science and Technology, eds., L.A. Klelntjens and P.J. Lemstra, Elsevier, London, 1986, p. 19.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • William J. Macknight
    • 1
  • Heung S. Kang
    • 1
  • Frank E. Karasz
    • 1
  • Ronald Koningsveld
    • 2
  1. 1.Polymer Science & Engineering DepartmentUniversity of MassachusettsAmherstUSA
  2. 2.Polymer Research Institute ΣΠUniversity of MaastrichtMaastrichtNetherlands

Personalised recommendations