Mechanical Breakdown of Single Fibres and Microcomposites

  • H. Daniel Wagner
  • L. W. Steenbakkers


Recent results on the fracture behaviour of advanced fibers and model composite materials (microcomposites) are presented. The fiber data utilized are strength results for polydiacetylene whiskers and Kevlar 149 fibres. The probabilistic approach adopted for the effect of fibre diameter on strength is shown to be at least as appropriate as well-known empirical and LEFM-based schemes. A modified Poisson/Weibull scheme deals with a currently unsolved problem inherent to the classical Weibull distribution function, used as a Model for strength. Preliminary experimental results with model microcomposites (which consist of single fibers carefully placed within a matrix film using specially developed positioning techniques) are reviewed and, in particular, the usefulness of video/microphotographic techniques in the study of failure dynamics and fracture modes in composites is emphasized.


Single Fibre Fibre Strength Crystal Fibre Failure Dynamic Preliminary Experimental Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Phoenix, S. L., Composite Materials: Testing and Design (Third Conference), ASTM STP 546, 1974, pp. 130–151.Google Scholar
  2. 2.
    Smalley Jr., R. F., Turcotte, D. L., Solla, S. A., J. Geophys. Res. 90, B2, 1985, pp. 1894–1900.CrossRefGoogle Scholar
  3. 3.
    Turcotte, D. L., Smalley Jr., R. F., Solla, S. A., Nature 313, 6004, 1985, pp. 671–672.CrossRefGoogle Scholar
  4. 4.
    Kao, J. H. K., Computer Methods for Estimating Weibull Parameters in Reliability Studies, I. R. E. Trans, on Reliability and Quality Control, PGRQC No. 13, 1958, p. 15.Google Scholar
  5. 5.
    Williams, J. S., Biometrics 34 (2), 1978, pp. 209–222.CrossRefGoogle Scholar
  6. 6.
    Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials, John Wiley and Sons, Inc., 1976.Google Scholar
  7. 7.
    Weibull, W., J. Appl. Mech. 73 1951, 293.Google Scholar
  8. 8.
    Mann, N. R., Schafer, R. E., Singpurwalla, N. D., Methods for Statistical Analysis of Reliability and Life Data, John Wiley and Sons, Inc., 1974, Chapter 9.Google Scholar
  9. 9.
    Galiotis, C., Young, R. J., Polymer 24, 1983, pp. 1023–1030.CrossRefGoogle Scholar
  10. 10.
    Galiotis, C., Young, R. J., Batchelder, D. N., J. Mater. Sci. Letters 2, 1983, pp. 263–266.CrossRefGoogle Scholar
  11. 11.
    Galiotis, C., Read, R. T., Yeung, P. H. J., Young, R. J., Chalmers, I. F., Bloor, D., J. Polym. Sci. (Polym. Phys.) 22, 1984, pp. 1589–1606.CrossRefGoogle Scholar
  12. 12.
    Wagner, H. D., in Application of Fracture Mechanics to Composite Materials (R. B. Pipes, K. Friedrich, Eds.), Elsevier Sc. Publ. B. V., 1988 (to appear).Google Scholar
  13. 13.
    Wagner, H. D., Submitted, 1987.Google Scholar
  14. 14.
    Wagner, H. D., Phoenix, S. L., Schwartz, P., J. Coup. Mater. 18, 1984, pp. 312–338.CrossRefGoogle Scholar
  15. 15.
    Wagner, H. D., Submitted, 1988.Google Scholar
  16. 16.
    Steenbakkers, L. W., Wagner, H. D., Submitted, 1988.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • H. Daniel Wagner
    • 1
  • L. W. Steenbakkers
    • 1
  1. 1.Polymeric Composites Laboratory Department of Materials ResearchThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations