Fibre Deformation and Residual Thermal Stresses in Carbon Fibre Reinforced Peek

  • R. J. Young
  • R. J. Day
  • M. Zakikhani
  • I. M. Robinson


Raman Microscopy has been used to study the deformation of carbon fibres and an experimental grade carbon-fibre/PEEK composite prepreg. It has been found that the peak position of the Raman-active bands in the fibres are sensitive to the level of applied strain. Examination of the peak positions from the carbon fibres near the surface of the prepreg shows that the fibres are subjected to a residual compressive strain. The application of a tensile stress to the composite causes the fibre strain to become tensile although significant scatter is found in the measurements. The scatter is thought to be due to variations in the local carbon fibre strain on the 1µm level. It is demonstrated that residual compressive strain is expected from differential shrinkage between the fibres and matrix on cooling the composite from the processing temperature to room temperature.


Carbon Fibre Applied Strain Raman Microscopy Residual Thermal Stress RAMAN Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mitra, V.K., Risen, W.M. and Baugham, R.H. J.Chem.Phys. 66 (1977) 2731.CrossRefGoogle Scholar
  2. 2.
    Batchelder, D.N., and Bloor, D. Polym.Phys.Ed., 17 (1979) 569.CrossRefGoogle Scholar
  3. 3.
    Galiotis, C., Young, R.J. and Batchelder, D.N. J.Poly. Sci., Polym. Phys.Ed., 21 (1983) 2483.CrossRefGoogle Scholar
  4. 4.
    Galiotis, C., Robinson, I.M., Young, R.J., Smith, B.J.E. and Batchelder, D.N. Polymer Comm., 26, (1985) 354.Google Scholar
  5. 5.
    van der Zwaag, S., Northold, M.G., Young, R.J., Galiotis, C., Robinson, I.M. and Batchelder, D.N. Polymer Comm., 28 (1987) 276.Google Scholar
  6. 6.
    Day, R.J., Robinson, I.M., Zakikhani, M. and Young R.J. Polymer, 28 (1987) 1833.CrossRefGoogle Scholar
  7. 7.
    Robinson, I.M., Zakikhani, M., Day, R.J., Young, R.J. and Galiotis, C. J.Mater.Sci.Lett. 6 (1987) 1212.CrossRefGoogle Scholar
  8. 8.
    Tuinstra, F. and Koenig, J.L. J.Chem.Phys., 53 (1970) 1126CrossRefGoogle Scholar
  9. 9.
    Nemanich, R.J. and Solin, S.A. Phys.Rev. B, 20 (1979) 392.CrossRefGoogle Scholar
  10. 10.
    Tuinstra, and F. Koenig, J.L. J.Comp.Mat., 4 (1970) 492.Google Scholar
  11. 11.
    Morita, K., Murata, Y., Ishitani, A., Murayama, K., Ono, T. and Nakajima, A. Pure and Appl.Chem., 58 (1986) 455.CrossRefGoogle Scholar
  12. 12.
    Chieu, T.C., Dresselhaus, M.S. and Endo, M. Phys.Rev.B, 26 (1982) 5867.CrossRefGoogle Scholar
  13. 13.
    Galiotis, C., Young, R.J., Yeung, P.H.J. and Batchelder, D.N. J.Mater.Sci., 19 (1984) 3640.CrossRefGoogle Scholar
  14. 14.
    Robinson, T.M., Yeung, P.H.J., Galiotis, C., Young, R.J. and Batchelder, D.N. J.Mater.Sci. 21 (1986) 3440.CrossRefGoogle Scholar
  15. 15.
    Young, R.J., Galiotis, C., Robinson, I.M. and Batchelder, D.J., J.Mater.Sci. 22 (1987) 3642.CrossRefGoogle Scholar
  16. 16.
    Galiotis, C., Robinson, I.M., Batchelder, D.N. and Young, R.J. paper presented at Comp ’86 Patras, Greece, 1986 (to be published by Omega, Oxford, 1988).Google Scholar
  17. 17.
    Crick, R.A., Leach, D.C., Meakin, P.J. and Moore, D.R., J.Mater.Sci. 22 (1987) 2094.CrossRefGoogle Scholar
  18. 18.
    Cox, H.L. Brit.J.Appl.Phys. 3 (1952) 72.CrossRefGoogle Scholar
  19. 19.
    Young, R.J., Day, R.J., Zakikhani, M. and Robinson, I.M. Comp.Sci. and Tech. in press.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • R. J. Young
    • 1
  • R. J. Day
    • 1
  • M. Zakikhani
    • 1
  • I. M. Robinson
    • 1
  1. 1.Polymer Science and Technology GroupManchester Materials Science Centre UMISTManchesterUK

Personalised recommendations