Maximum Properties Achieved by Uniaxial Drawing of High Molecular Weight Polyolefins

  • Tetsuo Kanamoto
  • Roger S. Porter


Several flexible chain polymers of ultrahigh molecular weights (UHMW) have been uniaxially drawn from different morphologies by three techniques, including solid-state extrusion, tensile drawing, and their sequential combination (two-stage drawing). Among these, solution-grown single crystal (SGC) mats of UHMW-polyethylene, polypropylene, and poly(4-methyl-1-pentene) have been superdrawn, by two-stage drawing, to the limits in terms of mechanical and physical properties approaching theoretical limits. The morphlogies of such samples have been studied by density, DSC melting behavior, X-ray small- and wide-angle diffraction, thermal expansivity, etc. The results showed a significant difference in the microstructure between UHMW-PE and UHMW-PP superdrawn to the limits.


Draw Ratio Tensile Modulus Tensile Drawing Flexible Chain Polymer Draw Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ciferri, A. and Ward, I.M., Eds., Ultra-High Moldulus Polymers, Applied Science London, 1978.Google Scholar
  2. 2.
    Zachariades, A.E. and Porter, R.S., Eds., High-Modulus Polymers, Plastic Engineering Series, Marcel Dekker, New York and Basel, 1987, Vol. 17.Google Scholar
  3. 3.
    Lemstra, P.J. and Kirschbaum, R., Polymer, 1985, 26, 1372.CrossRefGoogle Scholar
  4. 4.
    Zwijnemberg, A. and Pennings, A.J., Colloid Polym. Sci., 1976, 254, 868.CrossRefGoogle Scholar
  5. 5.
    Smith, P., Lemstra, P.J. and Booij, H.C., Colloid Polym. Sci., 1980, 258, 891.CrossRefGoogle Scholar
  6. 6.
    Peguy, A. and Manley, R.St.J., Polymer, 1984, 25 (Commun.), 39.Google Scholar
  7. 7.
    Matsuo, M. and Sawatari, C., Macromolecules, 1986, 19, 2036.CrossRefGoogle Scholar
  8. 8.
    Kanamoto, T., Sherman, E.S. and Porter, R.S., Polymer J., 1979, 11, 497.CrossRefGoogle Scholar
  9. 9.
    Statton, W.O. J. Appl. Phys., 1967, 38, 4149CrossRefGoogle Scholar
  10. Ishikawa, K., Miyasaka, K. and Maeda, M., J. Poly. Sci., Polym. Phys., 1970, 7, 2029.Google Scholar
  11. 10.
    Kanamoto, T., Tsuruta, A., Tanaka, K., Takeda, M. and Porter, R.S., Polymer J., 1983, 15, 327.CrossRefGoogle Scholar
  12. 11.
    Kanamoto, T., Tsuruta, A., Tanaka, K. and Takeda, M., Polymer J., 1984, 16, 75.CrossRefGoogle Scholar
  13. 12.
    Kanamoto, T. and Ohtsu, O., Polymer J., 1987, 20, 179.CrossRefGoogle Scholar
  14. 13.
    Griswold, P.D., Zachariades, A.E. and Porter, R.S., Polym. Eng. Sci., 1978, 18, 861.CrossRefGoogle Scholar
  15. 14.
    Kanamoto, T., Tsuruta, A., Tanaka, K., Takeda, M. and Porter, R.S., Macromolecules, 1988, 21, 470.CrossRefGoogle Scholar
  16. 15.
    Sakurada, I., Ito, T. and Nakamae, K., J. Polym. Sci., Part C, 1966, 15, 75.Google Scholar
  17. 16.
    Obser, G. and Blasenberg, S., Colloid Polym. Sci., 1970, 241, 985.Google Scholar
  18. 17.
    Kaji, K., Sakurada, I., Nakamae, T. and Shikata, E., Bull. Inst. Chem. Res. Kyoto Univ., 1974, 52, 308.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • Tetsuo Kanamoto
    • 1
  • Roger S. Porter
    • 2
  1. 1.Department of Applied ChemistryScience University of TokyoKagurazaka, Shinjuku-ku, TokyoJapan
  2. 2.Department of Polymer Science and EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations