Skip to main content

Part of the book series: Elsevier Applied Biotechnology Series ((APBISE))

  • 1158 Accesses

Abstract

Thiamine was discovered in the course of a search for an agent that would cure beriberi. The conquest of beriberi began in 1885 when Takaki (1885) practically eradicated the disease among the Japanese navy by introducing fish, vegetables, meat and barley into the diet. In 1897 Eijkman (1897) showed that an experimental polyneuritis in fowl, which closely resembled the polyneuritic symptoms of beriberi, could be produced by feeding the birds on a diet of polished rice. When they were fed on unpolished rice they did not develop the disease. In 1926 Jansen & Donath (1926) isolated a crystalline hydrochloride of the antineuritic factor from rice bran.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akagi, M. & Kumaoka, H. (1963). Effect of sulfur-containing amino acids on the production of thiamine by Escherichia coli. J. Vitaminol., 9, 183–7.

    CAS  Google Scholar 

  • Ashida, K. (1942). Synthesis of vitamin B1 by microbes. Bulletin of the Agricultural Chemical Society of Japan., 18, 723–6.

    Article  CAS  Google Scholar 

  • Barger, G., Bergel, F. & Todd, A. R. (1935). Ãœber das Thiochrom aus Vitamin B1 (Antineurin). Chem. Ber., 68, 2257–62.

    Google Scholar 

  • Bellion, E. & Kirkley, D. (1977). The origin of the sulfur atom in thiamine. Biochem. Biophys. Acta, 497, 323–8.

    Article  CAS  Google Scholar 

  • Bellion, E., Kirkley, D. H. & Faust, J. R. (1976). The biosynthesis of the thiazole moiety of thiamine in Salmonella typhimurium. Biochim. biophys. Acta, 437, 229–37.

    CAS  Google Scholar 

  • David, S., Estramareix, B. & Hirshfield, H. (1966). Le formate, precurseur du carbone 4 de la pyrimidine de la thiamine. Bichim. biophys. Acta, 127, 264–5.

    Article  CAS  Google Scholar 

  • David, S., Estramareix, B., Fischer, J-C. & Therisod, M. (1981). l-Deoxy-D-threo-2-pentulose, the precursor of the five-carbon chain of the thiazole of thiamine. J. Am. Chem. Soc, 103, 7341–2.

    Article  CAS  Google Scholar 

  • Eijkman, C. (1897). Eine Beriberiahnliche Krankheit der Huehner. Virchows Arch. Pathol. Anat., 148, 523.

    Article  Google Scholar 

  • Estramareix, B. (1970). Biosynthese de la pyrimidine de la thiamine. Origine du carbone 6 chez Salmonella typhimurium. Biochim. biophys. Acta, 208, 170–71.

    Google Scholar 

  • Estramareix, B. & Lesieu, M. (1969). Biosynthese de la pyrimidine de la thiamine.Origine des carbones 2 et 4 chez Salmonella typhimurium. Biochim. biophys. Acta, 192, 375–7.

    CAS  Google Scholar 

  • Estramareix, B. & Therisod, M. (1972). La tyrosine, facteur de la biosynthese du thiazole de la thiamine chez Escherichia coli. Biochem. Biophys, Acta, 273, 275–82.

    Article  CAS  Google Scholar 

  • Estramareix, B. & Therisod, M. (1984). Biosynthesis of thiamine. 5-Aminoimidazole ribotide as the precursor of all the carbon atoms of the pyrimidine moiety. J. Am. Chem. Soc, 106, 3857–60.

    Article  CAS  Google Scholar 

  • Fujiwara, M. & Matsui, K. (1953). Determination of thiamine by the thiochrome reaction. Analyt. Chem., 25, 810–12.

    Article  CAS  Google Scholar 

  • Goldstein, G. A. & Brown, G. M. (1963). The biosynthesis of thiamine. V. Studies concerning precursors of the pyrimidine moiety. Archs. Biochem Biophys, 103, 449–52.

    Article  CAS  Google Scholar 

  • Green, D. E., Herbert, D. & Subrahmanyan, V. (1941). Carboxylase. J. Biol. Chem, 138, 327–39.

    CAS  Google Scholar 

  • Grue-Sørensen, G., White, R. L. & Spenser, I. D. (1986). Thiamin biosynthesis in Saccharomyces cerevisiae. Origin of the pyrimidine unit. J. Am. Chem. Soc. 108, 146–58.

    Article  Google Scholar 

  • Hennessy, D. J. & Cerecedo, I. R. (1939). The determination of free and phosphory-lated thiamine by a modified thiochrome assay. J. Am. Chem. Soc. 61, 179–83.

    Article  CAS  Google Scholar 

  • Hoyumpa, A. M., Middleton, H. M. III., Wilson, F. A. & Schenker, S. 1975. Thiamine transport across the rat intestine. I. Normal characteristics. Gastroenterology 68, 1218–227.

    CAS  Google Scholar 

  • Iwashima, A. (1980). Absorption and membrane transport of thiamine. In Vitaminology, Vol. II, ed. Vitamin Society of Japan, Tokyokagakudojin, Tokyo, pp. 30–39.

    Google Scholar 

  • Iwashima, A. & Nose, Y. (1970). Inhibition by phenylalanine of thiazole biosynthesis in Escherichia coli. J. Bacteriol, 104, 1014–16.

    CAS  Google Scholar 

  • Iwashima, A., Kawasaki, T. Nakamura, M. & Nose, Y. (1968). Effect of amino acids and purine bases on thiamine synthesis by Escherichia coli. J. Bacteriol 14, 203–10.

    CAS  Google Scholar 

  • Jansen, B. C. P. & Donath, W. F. (1926). On the isolation of antiberiberi vitamin. Proc Kon. Ned. Akad. Wet., 29, 1390.

    Google Scholar 

  • Kajiro, Y. (1957). Quantitative determination of thiamine pyrophosphate using apocarboxylase and alcohol dehydrogenase. J. Biochem., 44, 827–38.

    Google Scholar 

  • Kawasaki, T. & Nose, Y. (1969). Thiamine regulatory mutants in Escherichia coli. J. Biochem., 65, 417–25.

    CAS  Google Scholar 

  • Kawasaki, T. & Sanemori, H. (1985). Vitamin B1 Thiamines. In Modern Chromatographic Analysis of the Vitamins, ed. M. G. M. De Ruyter. Marcel Dekker, New York, pp. 385–411.

    Google Scholar 

  • Kawasaki, T., Iwashima, A. & Nose, Y. (1969). Regulation of thiamine biosynthesis in Escherichia coli. J. Biochem., 65, 407–16.

    CAS  Google Scholar 

  • Kawasaki, T., Sanemori, H., Egi, Y., Yoshida, S. & Yamada, K. (1976). Biochemical studies on pyrithiamine-resistant mutants of Escherichia coli K12. J. Biochem., 79, 1035–42.

    CAS  Google Scholar 

  • Kumaoka, H. & Brown, G. M. (1967). Biosynthesis of thiamine. VI. Incorporation of formate into carbon atom two of the pyrimidine moiety of thiamine. Archs. Biochem. Biophys., 122, 378–84.

    Article  CAS  Google Scholar 

  • Leder, I. G. (1975). Thiamine, biosynthesis and function. In Metabolic Pathways, Vol. 7, ed. D. M. Greenberg, Academic Press, New York, pp. 57–85.

    Google Scholar 

  • Linnett, P. E. & Walker, J. (1968). Biosynthesis of thiamine. Incorporation experiments with 14C-labelled substrates and with [15N]glycine in Saccharomyces Cerevisiae. Biochem. J., 109, 161–8.

    CAS  Google Scholar 

  • Linnett, P. E. & Walker, J. (1969). Biosynthesis of thiamine. IV. C-2 of glycine as the precursor of C-2 of the thiazole moiety in yeast. Biochim. biophys. Acta, 184, 381–5

    CAS  Google Scholar 

  • Lohmann, K. & Schuster, Ph. (1937). Untersuchungen über die Cocarboxylase. Biochem. Z., 294, 188–214.

    Google Scholar 

  • Matsukawa, T. (1953). Chemistry of the thio-thiamine and its related compounds. Vitamins (Kyoto), 6, 299–310.

    CAS  Google Scholar 

  • Matsukawa, T., Hirano, H. & Yurugi, S. (1970). Preparation of thiamine derivatives and analogs. Meth. Enzymol., 18A, 141–62.

    Article  Google Scholar 

  • Melnick, D. & Field, H. (1937). Chemical determination of vitamin B1. Reactions between thiamine in pure aqueous solution and diazotized p-aminoacetophenone. J. Biol. Chem., 127, 505–14.

    Google Scholar 

  • Merck Index (1983), 10th edn., ed. M. Windholz. Merck & Co. Rahhway, p. 9134.

    Google Scholar 

  • Morita, M., Nishibe, Y. & Mineshita, T. (1968). Natural occurrence of 2-(l- hydroxyethyl)thiamine in muscular tissues of animals. J. Vitaminol., 14, 230–38.

    CAS  Google Scholar 

  • Murata, K. (1982). Actions of two types of thiaminase on thiamine and its analogues. Ann. N.Y. Acad. Sci., 378, 146–56.

    Article  CAS  Google Scholar 

  • Newell, P. C. & Tucker, R. G. (1966a). The de-repression of thiamine biosynthesis by adenosine. A tool for investigating this biosynthetic pathway. Biochem. J., 100, 512–16.

    CAS  Google Scholar 

  • Newell, P. C. & Tucker, R. G. (1966b). The control mechanism of thiamine biosynthesis. A model for the study of control of converging pathways. Biochem. J., 100, 517–24.

    CAS  Google Scholar 

  • Newell, P. C. & Tucker, R. G. (1968a). Precursors of the pyrimidine moiety of thiamine. Biochem. J., 106, 271–77.

    CAS  Google Scholar 

  • Newell, P. C. & Tucker, R. G. (1968b). Biosynthesis of the pyrimidine moiety of thiamine. A new route of pyrimidine biosynthesis involving purine intermediates. Biochem. J., 106, 279–87.

    CAS  Google Scholar 

  • Sanemori, H., Ueki, H. & Kawasaki, T. (1980). Reversed-phase high-performance liquid chromatographic analysis of thiamine phosphate esters at subpicomole levels. Analyt. Biochem., 102, 451–5.

    Article  Google Scholar 

  • Silhankova, L. (1985a). Yeast mutants excreting vitamin B, and their use in the production of thiamine rich beers. J. Inst. Brew., 91, 78–81.

    CAS  Google Scholar 

  • Silhankova, L. (1985b). Genetic control of thiamine excretion and of its suppression in Saccharomyces cerevisiae. J. Inst. Brew., 91, 238–41.

    CAS  Google Scholar 

  • Stieglitz, B., Levy, R. & Mateles, R. I. (1974). Thiamine accumulation in yeast. J. Appl. Chem. Biotechnol., 24, 277–82.

    Article  CAS  Google Scholar 

  • Takaki, K. (1885). On the cause and prevention of Kakke. Transactions of Sei-I-Kawi, 4, Suppl., 29–37.

    Google Scholar 

  • Tazuya, K., Tanaka, M., Morisaki, M., Yamada, K. & Kumaoka, H. (1987a). Origin of nitrogen atoms of the pyrimidine moiety of thiamin. Biochem. Int., 14, 769–77.

    CAS  Google Scholar 

  • Tazuya, K., Yamada, K., Nakamura, K. & Kumaoka, H. (1987b). The origin of the sulfur atom of thiamin. Biochim. biophys. Acta, 924, 210–15.

    CAS  Google Scholar 

  • Thomas, M. H. (1966). Microbiological Assay Technics. In Methods of Vitamin Assay, ed. Association of Vitamin Chemists. Interscience Publishers, New York, pp. 37–62.

    Google Scholar 

  • Todd, A. R. & Bergel. F. (1937). Aneurin. Part VII. A synthesis of aneurin. J. Chem. Soc, 364–7.

    Google Scholar 

  • White, R. H. (1978). Stable isotope studies on the biosynthesis of the thiazole moiety of thiamin in Escherichia coli. Biochemistry, 17, 3833–40.

    Article  CAS  Google Scholar 

  • White, R. H. & Rudolph, F. (1978). The origin of the nitrogen atom in the thiazole ring of thiamine in Escherichia coli. Biochim. biophys. Acta, 542, 340–7.

    CAS  Google Scholar 

  • White, R. H. & Rudolph, F. B. (1979). Biosynthesis of the pyrimidine moiety of thiamine in Escherichia coli. Incorporations of stable isotope-labeled glycines. Biochemistry, 18, 2632–6.

    CAS  Google Scholar 

  • White, R. L. & Spenser, I. D. (1979). Thiamine biosynthesis in Saccharomyces cerevisiae. Origin of carbon-2 of the thiazole moiety. Biochem. J., 179, 315–25.

    Google Scholar 

  • White, R. L. & Spenser, I. D. (1982). Thiamin biosynthesis in yeast. Origin of the five-carbon unit of the thiazole moiety. J. Am. Chem. Soc. 104, 4934–43.

    Article  CAS  Google Scholar 

  • Williams, R. R. (1936). Structure of vitamin B1 . J. Am. Chem. Soc. 58, 1063–4

    Article  CAS  Google Scholar 

  • Williams, R. R. & Cline, J. K. (1936). Synthesis of vitamin B1. J. Am. Chem. Soc, 58, 1504–5.

    Article  CAS  Google Scholar 

  • Yurugi, S., Iwashima, A. & Nose, Y. (1979). Thiamine. In Data Book for Biochemistry, Vol. 1, ed. Japanese Biochemical Society, Tokyokagakudojin, Tokyo, pp. 1164–76.

    Google Scholar 

  • Yurugi, S. (1975). Thiamine (Vitamin B1). In Experimental Procedures in Biochemistry, Vol. 13, Vitamins & Coenzymes, ed. Japanese Biochemical Society, Tokyokagakudojin, Tokyo, pp. 55–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Iwashima, A. (1989). Microbial Synthesis of Vitamin B1 (Thiamine). In: Vandamme, E.J. (eds) Biotechnology of Vitamins, Pigments and Growth Factors. Elsevier Applied Biotechnology Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1111-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1111-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6991-5

  • Online ISBN: 978-94-009-1111-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics