Skip to main content

Part of the book series: Elsevier Applied Biotechnology Series ((APBISE))

Abstract

In 1927, Boas described a skin injury produced in rats by feeding raw egg white, as well as the occurrence in various foodstuffs of a ‘protective factor X’ that prevented and cured this injury (Boas, 1927). György et al. (1939) tracked down this protective factor and called it vitamin H after the German Haut for skin. Kögl & Tönnis (1936) isolated a yeast growth factor, biotin vitamin B8 from egg yolk in the form of its crystalline methyl ester and Kögl (1937) determined its empirical formula. Biotin was later shown to be identical to vitamin H, the protective factor X, and to coenzyme R. Melville et al. (1942) determined the correct structure of biotin, which was later confirmed by total chemical synthesis in the Merck laboratories (Harris et al., 1943, 1944a,b, 1945) and verified by X-ray crystallography (Traub, 1956; Trotter & Hamilton, 1966).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aida, K.(1986). An overview of the microbial production of amino acids. In Progress in Industrial Microbiology, Vol. 24 (Biotechnology of Amino Acid Production), ed. K. Aida, I. Chibata, K. Nakayama, K. Takinami & H. Yamada. Kodansha-Elsevier, Tokyo, pp. xxi–xxv.

    Google Scholar 

  • Baumgartener,R.,Suormala,T., Wick, H., Bachmann, C. & Jaggi, K. H. (1981). Biotin dependency causing multiple carboxylase deficiency in vivo. Pediatr. Res.15,1189.

    Google Scholar 

  • Boas, M. A. (1927). The effect of desiccation upon the nutritive properties of egg-white. Biochem. J., 21, 712–24.

    CAS  Google Scholar 

  • Boeckx, R. L. & Dakshinamurti, K. (1974). Biotin mediated protein biosynthesis. Biochem. J., 140, 549–56.

    CAS  Google Scholar 

  • Bonnemere, C, Hamilton, J. A., Steinrauf, L. K. & Knappe, J. (1965). Structure of the bis-p-bromoanilide of carbon dioxide biotin. Biochemistry, 4, 240–45.

    Article  CAS  Google Scholar 

  • Bozian, R. C., Moussavian, N. & Piepmeyer, J. L. (1981). Biotin deficiency during prolonged home total parenteral nutrition (TPN). Clin. Res., 29, 622A.

    Google Scholar 

  • Chaiet, L. & Wolf, F. J. (1964). The properties of streptavidin, a biotin-binding protein produced by Streptomycetes. Archs Biochem. Biophys., 106, 1–5.

    Article  CAS  Google Scholar 

  • Dakshinamurti, K. & Allan, L.(1979). Isotopic dilution assay for biotin: Use of [3H]biotin. In Methods in Enzymology, Vol. 62, ed. D. B. McCormick & L. D. Wright. Academic Press, New York, pp. 284–9.

    Google Scholar 

  • Dakshinamurti, K. & Cheah-Tan, C. (1968). Liver glucokinase of the biotin deficient rat. Can. J. Biochem., 46, 75–80.

    CAS  Google Scholar 

  • Dakshinamurti, K. & Cheah-Tan, C. (1970). Biotin-mediated synthesis of hepatic glucokinase in the rat. Archs Biochem. Biophys., 127, 17–21.

    Article  Google Scholar 

  • Dakshinamurti, K. & Hong, H. C. (1970). Regulation of key hepatic glycolytic enzymes. Enzymol. Biol. Clin., 11, 423–8.

    CAS  Google Scholar 

  • Dakshinamurti, K., Tarrago-Litvak, L. & Hong, H. C. (1970). Biotin and glucose metabolism. Can. J. Biochem., 48, 493–500.

    Article  CAS  Google Scholar 

  • Dittmer, K. & du Vigneaud, V. (1944). Antibiotins. Science, 100, 129–31.

    Article  CAS  Google Scholar 

  • Eakin, R. E. & Eakin, E. E. (1942). A biosynthesis of biotin. Science, 96, 187–8.

    Article  CAS  Google Scholar 

  • Eisenberg, M. A. (1973). Biotin: biogenesis, transport and their regulation. Adv. Enzymol., 38, 317–72.

    CAS  Google Scholar 

  • Eisenberg, M. A. & Krell, K. (1969). Dethiobiotin synthesis from 7,8-diaminopelargonic acid in cell-free extracts of a biotin auxotroph of Escherichia coli K-12. J. Biol. Chem., 244, 5503–9.

    CAS  Google Scholar 

  • Eisenberg, M. A. & Star, C. (1968). Synthesis of 7-keto-8-aminopelargonic acid, a biotin vitamer, in cell-free extracts of Escherichia coli biotin auxotrophs. J. Bacteriol., 96, 1291–7.

    CAS  Google Scholar 

  • Eisenberg, M. A., Mea, B., Prakash, O. & Eisenberg, M. R. (1975). Properties of a-dehydrobiotin-resistant mutants of Escherichia coli K-12. J. Bacteriol., 122, 66–72.

    CAS  Google Scholar 

  • Eisenberg, M. A., Prakash, O. & Hsiung, S. C. (1982). Purification and properties of the biotin repressor—a bifunctional protein. J. Biol. Chem., 257, 15167–73.

    CAS  Google Scholar 

  • Fall, R. R. & Vagelos, P. R. (1972). Acetyl coenzyme A carboxylase. Molecular forms and subunit composition of biotin carboxyl carrier protein. J. Biol. Chem., 247, 8005–15.

    CAS  Google Scholar 

  • Goldberg, M. W. & Sternbach, L. H. (1949). US Patents 2,489,232–2,489,238.

    Google Scholar 

  • Green, N. M. (1970). Spectrophometric determination of avidin and biotin. In Methods in Enzymology, Vol. 18A, ed. D. B. McCormick & L. D. Wright. Academic Press, New York, pp. 418–24.

    Google Scholar 

  • Guillerm, G., Frappier, F., Gaudry, M. & Marquet, A. (1977). On the mechanism of conversion of dethiobiotin to biotin in Escherichia coli. Biochimie, 59, 119–26.

    Article  CAS  Google Scholar 

  • György, P. (1967). Biotin. In The Vitamins, 2nd edn, Vol. 7, ed. W. H. Sebrell & R. S. Harris. Academic Press, New York, pp. 303–10.

    Google Scholar 

  • György, P. & Larger, B. W. (1968). Biotin. In The Vitamins, 2nd edn, Vol. 2, ed. W. H. Sebrell & R. S. Harris. Academic Press, New York, pp. 262–357.

    Google Scholar 

  • György, P., Kuhn, R. & Lederer, E. (1939). Attempts to isolate the factor (vitamin H) curative of egg white injury. J. Biol. Chem, 131, 745–59.

    Google Scholar 

  • Harris, S. A., Wolf, D. E., Mozingo, R. & Folkers, K. (1943). Synthetic biotin. Science, 97, 447–8.

    Article  CAS  Google Scholar 

  • Harris, S. A., Wolf, D. E., Mozingo, R., Anderson, R. C., Arth, G. E., Easton, N. R., Heyl, D., Wilson, A. N. & Folkers, K. (1944a). Biotin. II. Synthesis of biotin. J. Am. Chem. Soc, 66, 1756–7.

    Article  CAS  Google Scholar 

  • Harris, S. A., Easton, N. R., Heyl, D., Wilson, A. N. & Folkers, K. (1944a). Biotin. IV. Synthesis of 4-benzamido-3-ketotetrahydrothiophene. J. Am. Chem. Soc, 66, 1757–

    Article  CAS  Google Scholar 

  • Harris, S. A., Wolf, D. E., Mozingo, R., Arth, G. E., Anderson, R. C., Easton, N. R. & Folkers, K. (1945). Biotin. V. Synthesis of dl-biotin, dl-allobiotin and dl-epi-allobiotin. J. Am. Chem. Soc, 67, 2096–100.

    Article  CAS  Google Scholar 

  • Hirono, Y., Kojima, T. & Kimura, H. (1986). Japan Patent 14,901.

    Google Scholar 

  • Hood, R. L. (1979). Isotopic dilution assay for biotin: Use of [14C]biotin. In Methods in Enzymology, Vol. 62, ed. D. B. McCormick & L. D. Wright. Academic Press, New York, pp. 279–83.

    Google Scholar 

  • Ifuku, O. & Yanagi, M. (1988). Cloning of biotin Operon of Escherichia coli and breeding of biotin producers. Hakka to Kogyo (in Japanese), 46, 102–11.

    CAS  Google Scholar 

  • Ifuku, O., Haze, S., Kishimoto, J., Sakamoto, T. & Yanagi, M. (1986). Japan Patent 202,686.

    Google Scholar 

  • Ifuku, O., Haze, S., Sakamoto, T. & Kishimoto, J. (1987). Japan Patent 155,018.

    Google Scholar 

  • Iwahara, S., Emoto, Y., Tochikura, T. & Ogata, K. (1966a). Studies on biosynthesis of biotin by micro-organisms. Part III. The isolation of crystalline desthiobiotin from culture filtrate of Agric. Biol. Chem, 30, 64–7.

    Article  CAS  Google Scholar 

  • Iwahara, S., Takasawa, S., Tochikura, T. & Ogata, K. (1966b). Studies on biosynthesis of biotin by micro-organisms. Part IV. Conversion of desthiobiotin to biotin by various kinds of micro-organisms. Agric. Biol. Chem., 30, 385–92.

    Article  CAS  Google Scholar 

  • Iwahara, S., Takasawa, S., Tochikura, T. & Ogata, K. (1966c). Studies on biosynthesis of biotin by micro-organisms. Part V. degradation of desthiobiotin by molds. Agric. Biol. Chem., 30, 1069–75.

    Article  CAS  Google Scholar 

  • Izumi, Y. (1984). Studies on the metabolism of biotin and its regulation in microorganisms. Nippon Nogei Kagaku Kaishi, 58, 891–900.

    Article  CAS  Google Scholar 

  • Izumi, Y. & Ogata, K. (1977). Some aspects of the microbial production of biotin. Adv. Appl. Microbiol., 22, 145–76.

    Article  CAS  Google Scholar 

  • Izumi, Y., Sugisaki, K. & Ogata, K. (1973). Incorporation of the sulfur of l-[35S]methionine into the biotin molecule by intact cells of Rhodoturula glutinis. Biochim. biophys. Acta, 304, 887–90.

    CAS  Google Scholar 

  • Izumi, Y., Fukuda, H., Tani, Y. & Ogata, K. (1978). The mode of action of 5-(2-thienyl)-valeric acid on biotin biosynthesis. Agric. Biol. Chem., 42, 579–84.

    Article  CAS  Google Scholar 

  • Izumi, Y., Tani, Y. & Yanada, H. (1980). Biotin biosynthesis in micro-organisms. Bull. Inst. Chem. Res. Kyoto Univ., 58, 434–47.

    CAS  Google Scholar 

  • Izumi, Y., Kano, Y., Inagaki, K., Kawase, N., Tani, Y. & Yamada, H. (1981). Characterization of biotin biosynthetic enzymes of Agric. Biol. Chem,, a dethiobiotin producing bacterium. Agric. Biol. Chem., 45, 1983–9.

    Article  CAS  Google Scholar 

  • Kögl, F. (1937). Wirkstoffprinzip und Pflanzen Wachstum. Naturwissenschaften, 25, 465–70.

    Article  Google Scholar 

  • Kögl, F. & Tonnis, B. (1936). Uber des Bios-Problem. Darstellung von krystallisierten Biotin aus Eigelb. Z. Physiol. Chem., 242, 43–73.

    Article  Google Scholar 

  • Knappe, J., Ringelmann, E. & Lynen, F. (1961). Zur biochemischen Funktion des Biotins. III. Die dchemische Konstitution kdes enzymatisch gebildeten Carboxy-biotins. Biochem. Z., 335, 168–76.

    CAS  Google Scholar 

  • Kornegay, E. T. (1985). Biotin in swine nutrition. Ann. N. Y. Acad. Sci., 447, 112–21.

    Article  CAS  Google Scholar 

  • Kosow, D. P., Huang, S. C. & Lane, M. D. (1962). Propionyl coenzyme A holocarboxylase synthesis. I. Preparation and properties of the enzyme system. J. Biol. Chem, 237, 3633–9.

    CAS  Google Scholar 

  • Lamhonwah, A. M., Quan, F. & Gravel, R. A. (1987). Sequence homology around in the biotin-binding site of human propionyl-CoA carboxylase and pyruvate carboxylase. Archs Biochem. Biophys., 254, 631–6.

    Article  CAS  Google Scholar 

  • Lilly, V. G. & Leonian, L. H. (1944). Antibiotin effect of desthiobiotin. Science, 99, 205–6.

    Article  CAS  Google Scholar 

  • Lynen, F., Knappe, J., Lorch, E., Juttig, G. & Ringelmann, E. (1959). Die biochemischen Funktion des Biotin. Angew. Chem., 71, 481–91.

    Article  CAS  Google Scholar 

  • Lynen, F., Knappe, J., Lorch, E., Juttig, G., Ringelmann, E. & Lachance, J. P. (1961). Zur biochemischen Funktion des Biotins. II. Reinigung und Wirkungsweise der β-Methyl-crotonyl-Carboxylase. Biochem. Z., 335, 123–67.

    CAS  Google Scholar 

  • McCormick, D. B. & Roth, J. A. (1970). Colorimetric determination of biotin and analogs. In Methods in Enzymology, Vol. 18A, ed. D. B. McCormick & L. D. Wright. Academic Press, New York, pp. 383–5.

    Google Scholar 

  • Melville, D. B., Moyer, A. W., Hofmann, K. & du Vigneaud, V.(1942). The structure of biotin: The formation of thiophenevaleric acid from biotin. J. Biol. Chem, 146, 487–92.

    CAS  Google Scholar 

  • Mock, D. M., de Lorimer, A. A., Liebman, W. M., Sweetman, L. & Baker, H. (1981). Biotin deficiency: An unusual complication of parenteral alimentation. New Engl. J. Med., 304, 820–23.

    Article  CAS  Google Scholar 

  • Moss, J. & Lane, D. (1971). The biotin-dependent enzymes. Adv. Enzymol., 35, 321–442.

    CAS  Google Scholar 

  • Mueller, J. H. (1937a). Pimelic acid as a growth accessory for a strain of the diphtheria bacillus. Science, 85, 502–3.

    Article  CAS  Google Scholar 

  • Mueller, J. H. (1937b). Pimelic acid as a growth accessory for the diphtheria bacillus. J.Biol. Chem., 119, 121–9.

    Google Scholar 

  • Munnich, A., Saudubray, J. M., Carre, G., Coude, F. X., Ogier, H., Charpentier, C. & Frezal, J. (1981). Defective biotin absorption in multiple carboxylase deficiency. Lancet, 2, 263.

    Article  CAS  Google Scholar 

  • Ogata, K.(1970). Microbial synthesis of dethiobiotin and biotin. In Methods in Enzymology, Vol. 17A, ed. D. B. McCormick & L. D. Wright. Academic Press, New York, pp. 390–94.

    Google Scholar 

  • Ogata, K., Tochikura, T., Iwahara, S., Takasawa, S., Ikushima, K., Nishimura, A. & Kikuchi, M.(1965a). Studies on biosynthesis of biotin by micro-organisms. Part I. Accumulation of biotin-vitamers by various micro-organisms.Agric. Biol. Chem.,29, 889–94.

    Article  CAS  Google Scholar 

  • Ogata, K., Tochikura, T., Iwahara, S., Ikushima, K., Takasawa, S., Kikuchi, M. & Nishimura, A. (1965b). Studies on biosynthesis of biotin by micro-organisms. Part II. Identification of biotin-vitamers accumulated by various micro-organisms. Agric. Biol. Chem., 29, 895–901.

    Article  CAS  Google Scholar 

  • Ogawa, T., Kawano, T. & Matsui, M. (1977). A biomimetic synthesis of (+)-biotin from D-glucose. Carbohydrate Res., 57, c31–5.

    Article  CAS  Google Scholar 

  • Ogino, S., Fujimoto, S. & Aoki, Y. (1974a). Cooxidation of dl-cis-tetrahydro-2-oxo-4-n-pentyl-thieno-(3,4-d)-imidazoline (dl-TOPTI) by soil isolates of the genus Corynebacterium. Agric. Biol. Chem., 38, 275–8.

    Article  CAS  Google Scholar 

  • Ogino, S., Fujimoto, S. & Aoki, Y. (1974b). Production of biotin by microbial transformation of dl-cis-tetrahydro-2-oxo-4-n-pentyl-thieno-(3,4-d)-imidazoline (dl-TOPTI). Agric. Biol. Chem.,38, 707–12.

    Article  CAS  Google Scholar 

  • Ohrui, H. & Emoto, S. (1975). Stereospecific synthesis of (+)-biotin. Tetrahedr. Lett., 32, 2765–6.

    Article  Google Scholar 

  • Ohrui, H., Sueda, N. & Emoto, S. (1978). An alternative synthesis of (+)-biotin from carbohydrate, a formal synthesis of (+)-biotin from D-glucosamine. Agric. Biol. Chem., 42, 865–8.

    Article  CAS  Google Scholar 

  • Okumura, S., Tsugawa, R., Tsunoda T. & Motozaki, S. (1962a). Studies on the L-glutamic acid fermentation. Part III. On the biotin synthetic path in bacteria producing L-glutamic acid. Nippon Nogei Kagaku Kaishi, 36, 599–605.

    Article  CAS  Google Scholar 

  • Okumura, S., Tsugawa, R., Tsunoda, T. & Motozaki, S. (1962b). Studies on the glutamic acid fermentation. Part IV. The universality of biotin biosynthetic pathway. Nippon Nogei Kagaku Kaishi, 36, 605–13.

    Article  CAS  Google Scholar 

  • Osakai, M., Izumi, Y., Nakamura, K. & Yamada, H. (1986a). Bacterial degradation of biotin and dethiobiotin: Isolation and identification of ß-hydroxy and keto metabolites. Agric. Biol. Chem., 50, 311–6.

    Article  CAS  Google Scholar 

  • Osakai, M., Tamura, K., Izumi, Y. & Yamada, H. (1986b). Reinvestigation of compound X, a suspected biotin intermediate: Identification of A/-formyl derivatives of biotin and dethiobiotin. J. Nutr. Sei. Vitaminol., 32, 279–86.

    Article  CAS  Google Scholar 

  • Osawa, I., Fuji, N. & Kamogawa, K. (1987). Japan Patent 275,684.

    Google Scholar 

  • Osawa, I., Speck, D., Kisou, T., Hayakawa, K., Zinsius, M., Gloeckler, R., Lemoine, Y. & Kamogawa, K. (1989). Cloning and expression in Escherichia coli and Bacillus subtilis of the biotin synthetase gene from Bacillus sphaericus,. Gene, in press.

    Google Scholar 

  • Pai, C. H. (1969). Biosynthesis of desthiobiotin in cell-free extracts of Escherichia coli. J. Bacteriol, 99, 696–701.

    CAS  Google Scholar 

  • Pai, C. H. (1971). Biosynthesis of biotin: Synthesis of 7,8-diaminopelargonic acid in cell-free extracts of Escherichia coli. J. Bacteriol, 105, 793–800.

    CAS  Google Scholar 

  • Pai, C. H. (1975). Biochemical and genetic characterization of dehydrobiotin resistant mutants of Escherichia coli. Molec. Gen. Genet., 134, 345–57.

    Article  Google Scholar 

  • Parry, R. J. & Kunitani, M. G. (1976). Biotin biosynthesis. 1. The incorporation of specifically tritiated dethiobiotin into biotin. J. Am. Chem. Soc, 98, 4024–26.

    Article  CAS  Google Scholar 

  • Parry, R. J. & Naidu, M. V.(1980). Biotin biosynthesis. Incorporation of 5(RS)-3H-dethiobiotin into biotin. Tetrahedr. Lett., 21, 47–6.

    Article  CAS  Google Scholar 

  • Pearson, J. A., Johnson, A. R., Hood, R. L. & Fogerty, A. C. (1976). Fatty liver and Kidney syndrome in chicks. I. Effect of biotin in diet. Aust. J. Biol. Sci., 29, 419–28.

    CAS  Google Scholar 

  • Polakis, S. E., Guchhait, R. B., Zwergel, E. E. & Lane, M. D. (1974). Acetyl coenzyme A carboxylase system of Escherichia coli: Studies on the mechanism of the biotin carboxylase- and carboxyl transferase-catalyzed reactions. J. Biol Chem., 249, 6657–67.

    CAS  Google Scholar 

  • Pontecorvo, G. (1953). The genetics of Aspergillus nidulans. Adv. Genet., 5, 208–38.

    Google Scholar 

  • Prakash, O. & Eisenberg, M. A. (1979). Biotinyl 5′-adenylate: Corepressor role in the regulation of the biotin genes of Escherichia coli K-12. Proc. Natn. Acad. Sci. U.S.A., 76, 5593–602.

    Article  Google Scholar 

  • Roth, K. S., Yang, W., Allan, L., Saunders, M., Gravel, R. A. & Dakshinamurti, K. (1982). Prenatal administration of biotin in biotin responsive multiple carboxylase deficiency. Pediatr. Res., 16, 126.

    CAS  Google Scholar 

  • Ryan, F. J. (1956). Contributions from microbiology to the concept of the gene and allelism. Japan J. Genet., 31, 265–73.

    Article  Google Scholar 

  • Salib, A. G., Frappier, F., Guillerm, G. & Marquet, A. (1979). On the mechanism of conversion of dethiobiotin to biotin in Escherichia coli. III. Isolation of an intermediate in the biosynthesis of biotin from dethiobiotin, Biochem. Biophys. Res. Commun., 88, 312–9.

    Article  CAS  Google Scholar 

  • Scheiner,J. (1985). Biotin. In Methods of Vitamin Assay, 4th edn, ed. J. Augustin, B. P. Klein, D. A. Becker & P. B. Venugopal. John Wiley & Sons, New York, pp. 535–53

    Google Scholar 

  • Scheiner, J. & DeRitter, E. (1975). Biotin content of feedstuffs. J. Agric. Food Chem., 23, 1157–62.

    Article  CAS  Google Scholar 

  • Spence, J. T. & Koudelka, A. P. (1984). Effects of biotin upon the intracellular level of cGMP and the activity of glucokinase in cultured rat hepatocytes. J. Biol. Chem, 259, 6393–6.

    CAS  Google Scholar 

  • Stallings, W. & Titta, G. T. de (1985). Crystallographic investigations of biotin and carboxybiotin derivatives. Ann. N. Y. Acad. Sci., 447, 152–68.

    Article  CAS  Google Scholar 

  • Stokes, J. L. & Gunness, J. (1945). Microbial activity of synthetic biotin, its optical isomers, and related compounds. J. Biol. Chem, 157, 121–6.

    CAS  Google Scholar 

  • Svejcar, J. & Homolka, J. (1950). Experimental experiences with biotin in babies. Ann. Paediat., 174, 175–93.

    CAS  Google Scholar 

  • Szybalski, E. H. & Szybalski, W. (1982). A physical map of the Escherichia coli bio operon. Gene, 19, 93–103.

    Article  CAS  Google Scholar 

  • Takai, T., Wada, K. & Tanabe, T. (1987). Primary structure of the biotin-binding site of chicken liver acetyl-CoA carboxylase. FEBS Lett., 212, 98–102.

    Article  CAS  Google Scholar 

  • Takai, T., Yokoyama, C, Wada, K. & Tanabe, T. (1988). Primary structure of chicken liver acetyl-CoA carboxylase deduced from cDNA sequence. J. Biol. Chem, 263, 2651–7.

    CAS  Google Scholar 

  • Tanaka, K. (1981). New light on biotin deficiency. N. Engl. J. Med., 304, 839–40.

    Article  CAS  Google Scholar 

  • Tanaka,M.,Yamamoto, H., Izumi, Y. & Yamada, H.(1986). Purification and properties of biotinyl-CoA synthetase from Mycoplana sp. No. 166. Archs Biochem. Biophys., 251, 479–86.

    Google Scholar 

  • Tanaka, M., Izumi, Y. & Yamada, H. (1987a). Biotin assay using lyophilized and glycerol-suspended cultures. J. Microbiol. Meth., 6, 237–46.

    Article  CAS  Google Scholar 

  • Tanaka, M., Izumi, Y. & Yamada, H. (1987b). Enzymatic assay for biotin using biotinyl-CoA synthetase. Agric. Biol. Chem., 51, 2585–6.

    Article  CAS  Google Scholar 

  • Tanaka, M., Izumi, Y. & Yamada, H. (1988). Microbial metabolism and production of biotin. Vitamin (Japan), 62, 305–15.

    CAS  Google Scholar 

  • Tatum, E. L. (1945). Desthiobiotin in the biosynthesis of biotin. J. Biol. Chem, 160, 455–59.

    CAS  Google Scholar 

  • Thoene, J., Baker, H., Yoshino, M. & Sweetmen, L. (1981). Biotin-responsive carboxylase deficiency associated with subnormal plasma and urinary biotin. N. Engl. J. Med., 304, 817–20.

    Article  CAS  Google Scholar 

  • Trainor, D., Parry, R. J. & Gitterman, A.(1980). Biotin biosynthesis. 2. Stereochemistry of sulfur introduction at C-4 of dethiobiotin. J. Am. Chem. Soc, 102, 1467–8.

    Article  CAS  Google Scholar 

  • Traub, W. (1956). Crystal structure of biotin. Nature, Lond., 178, 649–50.

    Article  CAS  Google Scholar 

  • Trotter, J. & Hamilton, J. A. (1966). The absolute configuration of biotin. Biochemistry, 5, 713–4.

    Article  CAS  Google Scholar 

  • Vesely, D. L. (1982). Biotin enhances guanylate cyclase activity. Science, 216, 1329–30.

    Article  CAS  Google Scholar 

  • Vesely, D. L., Wormser, H. C. & Abramson, H. N. (1984). Biotin analogs activate guanylate cyclase. Molec. Cell. Biochem., 60, 109–14.

    Article  CAS  Google Scholar 

  • Vigneaud, V. du, Dittmer, K., Hauge, E. & Long, B. (1942). The growth-stimulating effect of biotin for the diphtheria bacillus in the absence of pimelic acid. Science, 96, 186–7.

    Article  Google Scholar 

  • Wakil, S. J. & Gibson, D. M. (1960). Studies on the mechanism of fatty acid synthesis. VIII. The participation of protein-bound biotin in the biosynthesis of fatty acids. Biochim. Biophys. Acta, 41, 122–9.

    Article  CAS  Google Scholar 

  • Wakil, S. J., Titchener, E. B. & Gibson, D. M. (1958). Evidence for the participation of biotin in the enzymic synthesis of fatty acids. Biochim. Biophys. Acta, 29, 225–6.

    Article  CAS  Google Scholar 

  • Watanabe, K., Yano, S. & Yamada, Y. (1982). The selection of cultured plant cell lines producing high levels of biotin. Phytochemistry, 21, 513–6.

    Article  CAS  Google Scholar 

  • Whitehead, C. C. (1981). The assessment of biotin status in man and animals. Proc. Nutr. Soc, 40, 165–72.

    Article  CAS  Google Scholar 

  • Wolf, D. E., Valiant, J., Peck, R. L. & Folkers, K. (1952). Synthesis of biocytin. J. Am. Chem. Soc., 74, 2002–3.

    Article  CAS  Google Scholar 

  • Wood, H. G. & Barden, R. E. (1977). Biotin enzymes. Ann. Rev. Biochem., 46, 385–413.

    Article  CAS  Google Scholar 

  • Yamada, H., Osakai, M., Tani, Y. & Izumi, Y. (1983). Biotin overproduction by biotin analog-resistant mutants of Agric. Biol. Chem,. 47, 1011–6.

    Article  CAS  Google Scholar 

  • Yamada, H., Osakai, M. & Izumi, Y. (1984). Formation of biotinyl-CoA synthetase, the first enzyme involved in microbial biotin degradation. Agric. Biol. Chem., 48, 2039–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Izumi, Y., Yamada, H. (1989). Microbial Production of Biotin. In: Vandamme, E.J. (eds) Biotechnology of Vitamins, Pigments and Growth Factors. Elsevier Applied Biotechnology Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1111-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1111-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6991-5

  • Online ISBN: 978-94-009-1111-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics