Skip to main content

Part of the book series: Elsevier Applied Biotechnology Series ((APBISE))

Abstract

d-Ribose and its derivative, 2-deoxy-d-ribose, are components of RNA and DNA, respectively. It is of interest that these pentoses are components of such important biopolymers in the hereditary material of organisms whereas other ubiquitous pentoses, l-arabinose and d-xylose, are usually present in the plant cell walls. Why the pentose components of nucleic acids are d-ribose and 2-deoxy-d-ribose is an unresolved problem; D-ribose and its derivatives have been also found widely in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Sabé, M. & Richman, J. (1973). On the regulation of D-ribose metabolism in E. coli B/r. II. Chromosomal location and fine structure analysis of the D-ribose permease and D-ribokinase structural genes by P1 transduction. Molec. Gen Genet 122, 303–12.

    Article  Google Scholar 

  • Abou-Sabé, M., Pilla, J., Hazuda, D. & Ninfa, A. (1982). Evolution of the D-ribose operon of Escherichia coli B/r. J. Bacteriol., 150, 762–9.

    Google Scholar 

  • Adler, J. (1969). Chemoreceptors in bacteria. Science, 166, 1588–97.

    Article  CAS  Google Scholar 

  • Aksamit, R. & Koshland, D. Jr (1972). A ribose binding protein of Salmonella typhimurium. Biochem. biophys. Res. Commun., 48, 1348–53.

    Article  CAS  Google Scholar 

  • Aksamit, R. R. & Koshland, D. E. Jr (1974). Identification of the ribose binding protein as the receptor for ribose chemotaxis in Salmonella typhimurium. Biochemistry, 13, 4473–8.

    Article  CAS  Google Scholar 

  • Alphen, W. van, Lugtenberg, B. & Berendsen, W. (1976). Heptose-deficient mutants of Escherichia coli K12 deficient in up to three major outer membrane proteins. Molec. Gen. Genet., 147, 263–9.

    Article  Google Scholar 

  • Amemura, A., Hisamatsu, M., Ghai, S. K. & Harada, T. (1981). Structural studies on a new polysaccharide, containing D-riburonic acid, from Rhizobium meliloti IFO 13336. Carbohydr. Res., 91, 59–65.

    Article  CAS  Google Scholar 

  • Ames, G. F.-L., Spudich, E. N. & Nikaido, H. (1974). Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations. J. Bacteriol., 117, 406–16.

    CAS  Google Scholar 

  • Anderson, A. & Cooper, R. A. (1970). Biochemical and genetical studies on ribose catabolism in Escherichia coli. J. Gen. Microbiol., 62, 335–9.

    CAS  Google Scholar 

  • Asai, T., Doi, M., Kono, T. & Fukuda, H. (1978). Kinetic study on the production of D-ribose by Bacillus sp. J. Ferment. Technol., 56, 91–5.

    CAS  Google Scholar 

  • Austin, W. C. & Humoller, F. L. (1934). The preparation of l-ribose. J. Am. Chem. Soc, 56, 1152–3.

    Article  CAS  Google Scholar 

  • Avery, O. T., MacLeod, C. M. & McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. exp. Med., 79, 137–58.

    Article  CAS  Google Scholar 

  • Baddiley, J., Thain, E. M., Novelli, G. D. & Lipmann, F. (1953). Structure of coenzyme A. Nature, Lond., 171, 76.

    Article  CAS  Google Scholar 

  • Baker, B. R. & Schaub, R. E. (1953). Achromycin. Synthetic studies. III. Synthesis of 3-amino-D-ribose, a hydrolytic product. J. Am. Chem. Soc, 75, 3864–5.

    Article  CAS  Google Scholar 

  • Barnett, J. A. (1976). The utilization of sugars by yeasts. Adv. Carbohydr. Chem. Biochem., 32, 125–234.

    Article  CAS  Google Scholar 

  • Bayer, M. E., Koplow, J. & Goldfine, H. (1975). Alterations in envelope structure of heptose-deficient mutants of Escherichia coli as revealed by freeze-etching. Proc. natn. Acad. Sci. U.S.A., 72, 5145–9.

    Article  CAS  Google Scholar 

  • Beaven, G. R., Holiday, E. R., Johnson, E. A., Ellis, B., Mamalis, P., Petrow, V. & Sturgeon, B. (1949). The chemistry of anti-pernicious anaemia factors. Part III. 5:6-Disubstituted benziminazoles as products of acid hydrolysis of vitamin B12. J. Pharm. Pharmac, 1, 957–70.

    Article  CAS  Google Scholar 

  • Bentley, H. R., Cunningham, K. G. & Spring, F. S. (1951). Cordycepin, a metabolic product from cultures of Cordyceps militaris (Linn.) Link. Part II. The structure of cordycepin. J. Chem. Soc, 1951, 2301–5.

    Article  Google Scholar 

  • Berezovskii, V. M. & Rodionova, E. P. (1953). Transformations and synthesis of carbohydrates. VII. Synthesis of D-ribose. Sbornik Statei Obshchei Khim., 2, 939–43; Chem. Abstr., 49, 6838 (1955).

    CAS  Google Scholar 

  • Berger, L. & Lee, J. (1944). Arylamine-N-glycosides. Part II. Arylamine-N-pentosides and complex salt formation studies. J. Org. Chem., 11, 84–90.

    Google Scholar 

  • Berger, L., Solmssen, U. V., Leonard, F., Wenis, E. & Lee, J. (1944). Arylamine-N-glycosides. Part III. Hydrolysis of arylamine-N-pentosides and the preparation of crystalline D-ribose. J. Org. Chem., 11, 91–4.

    Article  Google Scholar 

  • Bernstein, I. A. (1953). Fermentation of ribose-C14 by Lacto Bacillus pentosus. J. Biol. Chem., 205, 309–16.

    CAS  Google Scholar 

  • Bial, M. (1902). Die Diagnose der Pentosurie. Deut. med. Wochschr., 28, 253–4.

    Article  Google Scholar 

  • Bial, M. (1903). Ueber die Diagnose der Pentosurie mit dem von mir angegebenen Reagens. Deut. med. Wochschr., 29, 477–8.

    Article  Google Scholar 

  • Borman, A. H., Jong, E. W. de, Thierry, R., Westbroek, P., Bosch, L., Gruter, M. & Kamerling, J. P. (1987). Coccolith-associated polysaccharides from cells of Emiliania Huxleyi (Haptophyceae). J. Phycol., 23, 118–23.

    Article  CAS  Google Scholar 

  • Bredereck, H. & Rothe, G. (1938). Nucleinsäuren, VI. Mitteil: Darstellung der Nucleoside durch enzymatische Hydrolyse der Hefenucleinsäure; zugleich ein Beitrag zur Darstellung der D-ribose. Ber., 71, 408–11.

    Google Scholar 

  • Bredereck, H., Köthnig, M. & Berger, E. (1940). Ãœber die D-ribose (Darstellung einer krystallisierten Anhydroribose). Ber., 73, 956–62.

    Google Scholar 

  • Brink, N. G. & Folkers, K. (1949). Vitamin B12. VI. 5,6-Dimethylbenzimidazole, a degradation product of vitamin B12. J. Am. Chem. Soc., 71, 2951.

    Article  CAS  Google Scholar 

  • Brink, N. G. & Folkers, K. (1950). Vitamin B12. X. 5,6-Dimethylbenzimidazole, a degradation product of vitamin B12. J. Am. Chem. Soc, 72, 4442–3.

    Article  CAS  Google Scholar 

  • Brink, N. G., Holly, F. W., Shunk, C. H., Peel, E. W., Cahill, J. J. & Folkers, K. (1950). Vitamin B12. IX. l-α-Ribofuranosido-5, 6-dimethylbenzimidazole, a degradation product of vitamin B12. J. Am. Chem. Soc, 72, 1866.

    Article  CAS  Google Scholar 

  • Buchanan, J. G., Johnson, A. W., Mills, J. A. & Todd, A. R. (1950a). The isolation of a phosphorus-containing degradation product from vitamin B12C. Chem. Ind., 1950, 426.

    Google Scholar 

  • Buchanan, J. G., Johnson, A. W., Mills, J. A. & Todd, A. R. (1950b). Chemistry of the vitamin B12 group. Part I. Acid hydrolysis studies. Isolation of a phosphorus-containing degradation product. J. Chem. Soc, 1950, 2845–55.

    Google Scholar 

  • Caldwell, D. R. & Newman, K. (1986). Pentose metabolism by Bacteroides ruminicola subsp. brevis strain B14. Curr. Microbiol., 14, 149–55.

    Article  CAS  Google Scholar 

  • Cantor, S. M. & Peniston, Q. P. (1940). The reduction of aldoses at the dropping mercury cathode: estimation of the aldehyde structure in aqueous solutions. J. Am. Chem. Soc. 62, 2113–21.

    Article  CAS  Google Scholar 

  • Caputto, R., Leloir, L. F., Cardini, C. E. & Paladini, A. C. (1950). Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J. Biol. Chem., 184, 333–50.

    CAS  Google Scholar 

  • Chargaff, E. & Lipshitz, R. (1953). Composition of mammalian desoxyribonucleic acids. J. Am. Chem. Soc, 75, 3658–61.

    Article  CAS  Google Scholar 

  • Chargaff, E., Vischer, E., Doniger, R., Green, C. & Misani, F. (1949). The composition of the desoxypentose nucleic acids of thymus and spleen. J. Biol. Chem., 177, 405–16.

    CAS  Google Scholar 

  • Cherbuliez, E. & Bernhard, K. (1932a). Recherches sur la graine de croton. I. Sur le crotonoside (2-oxy-6-amino-purine-D-riboside). Helv. Chim. Acta, 15, 464–71.

    Article  CAS  Google Scholar 

  • Cherbuliez, E. & Bernhard, K. (1932b). Remarques sur le crotonoside. Helv. Chim. Acta, 15, 978–80.

    Article  CAS  Google Scholar 

  • Curtis, S. J. (1974). Mechanism of energy coupling for transport of D-ribose in Escherichia coli. J. Bacteriol, 120, 295–303.

    CAS  Google Scholar 

  • David, J. & Wiesmeyer, H. (1970). Regulation of ribose metabolism in Escherichia coli. I. The ribose catabolic pathway. Biochim. biophys. Acta, 208, 45–55.

    CAS  Google Scholar 

  • Davis, A. R., Newton, E. B. & Benedict, S. R. (1922). The combined uric acid in beef blood. J. Biol Chem., 54, 595–9.

    CAS  Google Scholar 

  • Dickens, F. (1938a). Oxidation of phosphohexonate and pentose phosphoric acids by yeast enzymes. I. Oxidation of phosphohexonate. II. Oxidation of pentose phosphoric acids. Biochem. J., 32, 1626–44.

    CAS  Google Scholar 

  • Dickens, F. (1938b). Yeast fermentation of pentose phosphoric acids. Biochem. J., 32, 1645–53.

    CAS  Google Scholar 

  • Dills, S. S., Apperson, A., Schmidt, M. R. & Saier, M. H. Jr (1980). Carbohydrate transport in bacteria. Microbiol. Rev., 44, 385–418.

    CAS  Google Scholar 

  • Dilworth, M. J., Arwas, R., McKay, I. A., Saroso, S. & Glenn, A. R. (1986). Pentose metabolism in Rhizobium leguninosarum MNF300 and in cowpea Rhizobium NGR234. J. Gen. Microbiol., 132, 2733–42.

    CAS  Google Scholar 

  • Dische, Z. (1962a). Color reaction of ketoses with carbazole and sulfuric acid. In Methods in Carbohydrate Chemistry, Vol. I, ed. R. L. Whistler, M. L. Wolfrom, J. N. BeMiller & F. Shafizadeh. Academic Press, New York, London, pp. 481–2.

    Google Scholar 

  • Dische, Z. (1962b). Color reactions of pentoses. In Methods in Carbohydrate Chemistry, Vol. I, ed. R. L. Whistler, M. L. Wolfrom, J. N. BeMiller & F. Shafizadeh. Academic Press, New York, London, pp. 484–8.

    Google Scholar 

  • Doly, J. & Mandel, P. (1967). Mise en évidence de la biosynthèse in vivo d’unpolymère composé, le poly adénosine diphosphoribose dans les noyaux de foie de poulet. C. R. hebd. Séanc. Acad. Sei., Paris, Ser. D., 264, 2687–90.

    CAS  Google Scholar 

  • Duncan, M. J. (1981). Properties of tn5-induced carbohydrate mutants in Rhizobium meliloti. J. Gen. Microbiol., 122, 62–7.

    Google Scholar 

  • Eidels, L. & Osborn, M. J. (1971). Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium. Proc. natn. Acad. Sei. U.S.A., 68, 1673–7.

    Article  CAS  Google Scholar 

  • Ekenstein, W. A. van & Blanksma, J. J. (1913). Over D-ribose. Chem. Weekblad., 10, 664.

    Google Scholar 

  • Euler, H. von & Vestin, R. (1935). Zur Kenntnis der Wirkungen der Co-Zymase. Z. physiol. Chem., 237, 1–5.

    Article  Google Scholar 

  • Euler, H. von & Schlenk, F. (1937). Co-Zymase. Z. physiol. Chem., 246, 64–82.

    Article  Google Scholar 

  • Euler, H. von, Karrer, R., Malmberg, M., Schopp, K., Benz, F., Becker, B. & Frei, P. (1935). Synthese des Lactoflavins (Vitamin B2) und anderer Flavine. Helv. Chim. Acta, 18, 522–35.

    Article  Google Scholar 

  • Euler, H. von, Karrer, P. & Usteri, E. (1942). Der Zucker der Cozymase. Helv. Chim. Acta, 25, 323–5.

    CAS  Google Scholar 

  • Foster, J. W. (1944). Microbiological aspects of riboflavin. III. Oxidation studies with Pseudomonas riboflavina. J. Bacteriol., 48, 97–111.

    CAS  Google Scholar 

  • Fujita, Y., Ramaley, R. & Freese, E. (1977). Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis. J. Bacteriol., 132, 282–93.

    CAS  Google Scholar 

  • Galloway, D. R. & Furlong, C. E. (1977). The role of ribose-binding protein in transport and Chemotaxis in Escherichia coli K12. Archs. Biochem. Biophys., 184, 496–504.

    Article  CAS  Google Scholar 

  • Gehrke, M. & Aichner, F. X. (1927). Ãœber das Arabinal. Ber., 60, 918–22.

    Google Scholar 

  • Gerber, N. N. & Lechevalier, H. A. (1962). 3′-Amino- 3′-deoxyadenosine, an antitumor agent from Helminthosporium sp. J. Org. Chem., 27, 1731–2.

    Article  CAS  Google Scholar 

  • Gmeiner, J. (1977). The ribitol-phosphate-containing lipopolysaccharide from Proteus mirabilis, strain D52. Investigations on the structure of 0-specific chains. Eur. J. Biochem., 74, 171–80.

    Article  CAS  Google Scholar 

  • Gmeiner, J., Mayer, H., Fromme, I., Kotelko, K. & Zych, K. (1977). Ribitol-containing lipopolysaccharides from Proteus mirabilis and their serological relationship. Eur. J. Biochem., 72, 35–40.

    Article  CAS  Google Scholar 

  • Godin, P. (1953a). Étude du metabolisme ternaire de Penicillium brevi-compactum. I. Analyse chromatographique du milieu de culture. Biochim. biophys. Acta, 11, 114–18.

    CAS  Google Scholar 

  • Godin, P. (1953b). Étude du metabolisme ternaire de Penicillium brevi-compactum. II. Analyse chromatographique de la solution glucosée substitutée au milieu de culture initial. Biochim. biophys. Acta, 11, 119–21.

    CAS  Google Scholar 

  • Gomez, L. D. & Wallace, J. W. (1986). Flavonoids of Phlebodium. Biochem. Syst. Ecol., 14, 407–8.

    Article  CAS  Google Scholar 

  • Greenberg, D. M. (1969). Biosynthesis of amino acids and related compounds. In Metabolic Pathways, Vol. Ill, ed. D. M. Greenberg. Academic Press, New York, London, pp. 237–315.

    Google Scholar 

  • Groarke, J. M., Mahoney, W. C., Hope, J. N., Furlong, C. E., Robb, F. T., Zalkin, H. & Hermodson, M. A. (1983). The amino acid sequence of D-ribose-binding protein from Escherichia coli K12. J. Biol. Chem., 258, 12952–6.

    CAS  Google Scholar 

  • Guarino, A. J. & Kredich, N. M. (1963). Isolation and identification of 3′-amino-3′- deoxyadenosine from Cordyceps militaris. Biochim. biophys. Acta, 68, 317–19.

    Article  CAS  Google Scholar 

  • Hackman, R. H. & Trikojus, V. M. (1952). The composition of the honeydew excreted by Australian coccids of the genus Ceroplastes. Biochem. J., 51, 653–6.

    CAS  Google Scholar 

  • Harris, R. S., Wagner-Jauregg, T., Horwitt, M. K. & Witting, L. A. (1972). Riboflavin. In The Vitamins, Vol. V (2nd edn), ed. W. H. Sebrell & R. S. Harris. Academic Press, New York, London, pp. 1–96.

    Google Scholar 

  • Hartman, S. C. (1970). Purines and pyrimidines. In Metabolic Pathways, Vol. IV, ed. D. M. Greenberg. Academic Press, New York, London, pp. 1–68.

    Google Scholar 

  • Hazelbauer, G. L. & Adler, J. (1971). Role of the galactose binding protein in Chemotaxis of Escherichia coli toward galactose. Nature New Biol., 230, 101–4.

    CAS  Google Scholar 

  • Heath, E. C., Hurwitz, J., Horecker, B. L. & Ginsburg, A. (1958). Pentose fermentation by Lacto Bacillus plantarum. I. The cleavage of xylulose 5-phosphate by phosphoketolase. J. Biol. Chem., 231, 1009–29.

    CAS  Google Scholar 

  • Hershey, A. D. & Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol., 36, 39–56.

    Article  CAS  Google Scholar 

  • Hockett, R. C. & Hudson, C. S. (1934). Improvements in the preparation of D-arabinose from calcium gluconate. J. Am. Chem. Soc, 56, 1632–3.

    Article  CAS  Google Scholar 

  • Hoeksema, H. & Baczynskyj, L. (1976). A new metabolite from Streptomyces hygroscopicus, II. Identification as 1-deoxy-D-threo-pentulose. J. Antibiot., XXIX, 688–1.

    Google Scholar 

  • Hoffman, J., Lindberg, B., Hofstad, T. & Lygre, H. (1977). Structural studies of the polysaccharide antigen of Eubacterium saburreum, strain L.452. Carbohydr. Res., 58, 439–42.

    Article  CAS  Google Scholar 

  • Hofstad, T. & Lygre, H. (1977). Composition and antigenic properties of a surface polysaccharide isolated from Eubacterium saburreum, strain L452. Acta Pathol. Microbiol. Immunol. Scand. Section B, 85, 14–17.

    Google Scholar 

  • Holiday, E. R. & Petrow, V. (1949). Vitamin B12 as a 5:6-dimethylbenziminazole derivative. J. Pharm. Pharmac, 1, 734–5.

    Article  Google Scholar 

  • Hough, L., Jones, J. K. N. & Wadman, W. H. (1948). Application of paper partition chromatography to the separation of the sugars and their methylated derivatives on a column of powdered cellulose. Nature, Lond., 162, 448.

    Article  CAS  Google Scholar 

  • Hough, L., Jones, J. K. N. & Wadman, W. H. (1949). Quantitative analysis of mixtures of sugars by the method of partition chromatography. Part IV. The separation of the sugars and their methylated derivatives on columns of cellulose. J. Chem. Soc, 1949, 2511–16.

    Google Scholar 

  • Iida, A., Harayama, S., lino, T. & Hazelbauer, G. L. (1984). Molecular cloning and characterization of genes required for ribose transport and utilization in Escherichia coli K-12. J. Bacteriol, 158, 674–82.

    CAS  Google Scholar 

  • Irvin, R. T., Chatterjee, A. K., Sanderson, K. E. & Costerton, J. W. (1975). Composition of the cell envelope structure of a lipopolysaccharide-defective (heptose-deficient) strain and a smooth strain of Salmonella typhimurium. J. Bacteriol, 124, 930–41.

    CAS  Google Scholar 

  • Izumori, K., Rees, A. W. & Elbein, A. D. (1975). Purification, crystallization, and properties of D-ribose isomerase from Mycobacterium smegmatis. J. Biol. Chem., 250, 8085–7.

    CAS  Google Scholar 

  • Jeanlotz, R. W. & Fletcher, H. G. Jr (1951). The chemistry of ribose. Adv. Carbohydr. Chem. Biochem., 6, 135–74.

    Google Scholar 

  • Josephson, B. L. & Fraenkel, D. G. (1969). Transketolase mutants of Escherichia coli. J. Bacteriol., 100, 1289–95.

    CAS  Google Scholar 

  • Karrer, P., Schö, K. & Benz, F. (1935a). Synthesen von Flavin IV. Helv. Chim. Acta, 18, 426–9.

    Article  CAS  Google Scholar 

  • Karrer, P., Becker, B., Benz, F., Frei, P., Salomon, H. & Schopp, K. (1935b). Zur Synthese des Lactoflavins. Helv. Chim. Acta. 18, 1435–48.

    Article  CAS  Google Scholar 

  • Kauffmann, F., Jann, B., Krüger, L., Lüderitz, D. & Westphal, O. (1962). Zur Immunochemie der O-Antigen von Enterobacteriaceae. VIII. Analyse der Zucker-bausteine von Polysacchariden weiterer Salmonella- und Arizona-O-Gruppen. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Abt. 1: Orig., 186, 509–16.

    Google Scholar 

  • Keenan, G. T. (1926). The optical properties of sugars. J. Wash. Acad. Sci., 16, 433–40.

    CAS  Google Scholar 

  • Keller, G., Schleifer, K. H. & Götz, F. (1984). Cloning of the ribokinase gene of Staphylococcus hyicus subsp. hyicus in Staphylococcus carnosus. Archs Microbiol., 140, 218–24.

    Article  CAS  Google Scholar 

  • Klein, J. R. & Kohn, H. I. (1940). The synthesis of flavin-adenine dinucleotide from riboflavin by human blood cells in vitro and in vivo. J. Biol. Chem., 136, 177–89.

    CAS  Google Scholar 

  • Koplow, J. & Goldfine, H. (1974). Alterations in the outer membrane of the cell envelope of heptose-deficient mutants of Escherichia coli. J. Bacteriol., 117, 527–43.

    CAS  Google Scholar 

  • Kuhn, L. P. (1950). Infrared spectra of carbohydrates. Analyt. Chem., 22, 276–83.

    Article  CAS  Google Scholar 

  • Kuhn, R., Reinemund, K., Kaltschmitt, H., Ströbele, R. & Trischmann, H. (1935a). Synthetisches 6, 7-Dimethyl-9-D-ribo-flavin. Naturwissenschaften, 23, 260.

    Article  CAS  Google Scholar 

  • Kuhn, R., Reinemund, K., Weygand, F. & Ströbele, R. (1935b) Ãœber die Synthese des Lactoflavins (Vitamin B2). Ber., 68, 1765–74.

    Google Scholar 

  • Laine, R. A. & Sweeley, C. C. (1973). O-Methyl oximes of sugars. Analysis as O-trimethylsilyl derivatives by gas-liquid chromatography and mass spectrometry. Carbohydr. Res., 27, 199–213.

    CAS  Google Scholar 

  • Levene, P. A. (1935). Note on the preparation of crystalline D-mannose and of crystalline D-ribose. J. Biol. Chem., 108, 419–20.

    CAS  Google Scholar 

  • Levene, P. A. & Clark, E. P. (1921). D-Ribohexosaminic acids. J. Biol. Chem., 46, 19–33.

    CAS  Google Scholar 

  • Levene, P. A. & Jacobs, W. A. (1909). Ãœber Inosinsäure. Ber., 42, 1198–203.

    CAS  Google Scholar 

  • Levene, P. A., Mikeska, L. A. & Mori, T. (1930). On the carbohydrate of thymonucleic acid. J. Biol. Chem., 85, 785–7.

    CAS  Google Scholar 

  • Lockwood, L. B. & Nelson, G. E. (1946). The oxidation of pentoses by Pseudomonas. J. Bacteriol., 52, 581–6.

    CAS  Google Scholar 

  • Lopilato, J. E., Garwin, J. L., Emr, S. D., Silhavy, T. J. & Beckwith, J. R. (1984). D-ribose metabolism in Escherichia coli K-12: genetics, regulation and transport. J. Bacteriol., 158, 665–73.

    CAS  Google Scholar 

  • Magasanik, B. (1961). Catabolite repression. Cold Spring Harbor Symp. Quant. Biol., 26, 249–62.

    CAS  Google Scholar 

  • Mandel, J. A. & Dunham, E. K. (1912). Preliminary note on a purine-hexose compound. J. Biol. Chem., 11, 85–6.

    CAS  Google Scholar 

  • Mejbaum, W. (1939). Ãœber die Bestimmung kleiner Pentosemengen, insbesondere in Derivaten der Adenylsäure. Z. Physiol. Chem., 258, 117–20.

    Article  CAS  Google Scholar 

  • Miller, G. L., Golder, R. H. & Miller, E. E. (1951). Determination of pentoses. Analyt. Chem., 23, 903–5.

    Article  CAS  Google Scholar 

  • Miyano, K., Ishibashi, M., Kunita, N., Takeda, Y. & Miwatani, T. (1983). Demonstration of the presence of alditols and galacturonic acid in Vibrio parahaemolyticus 010 lipopolysaccharide. FEMS Microbiol. Lett., 20, 225–8.

    Article  CAS  Google Scholar 

  • Morimoto, S., Tawaratani, T., Azuma, K., Oshima, T. & Sinskey, A. J. (1987). Purification and properties of aldose reductase from Pachysolen tannophilus. J. Ferment. Technol., 65, 17–21.

    Article  CAS  Google Scholar 

  • Nogami, I., Kida, M., Iijima, T. & Yoneda, M. (1968). Studies on the fermentative production of purine derivatives. Part I. Derivation of guanosine and inosine-producing mutants of a Bacillus strain. Agric. Biol. Chem., 32, 144–52.

    Article  CAS  Google Scholar 

  • Ochoa, S. & Rossiter, R. J. (1939). Flavin-adenine-dinucleotide in rat tissues. Biochem. J., 33, 2008–16.

    CAS  Google Scholar 

  • Ogata, K. (1976). History and prospects. In Microbial Production of Nucleic Acid-Related Substances, ed. K. Ogata, S. Kinoshita, T. Tsunoda & K. Aida. Kodansha Ltd, Tokyo and John Wiley & Sons, New York, London, Sydney, Toronto, pp. xiii–xviii.

    Google Scholar 

  • Ogata, K., Kinoshita, S., Tsunoda, T. & Aida, K. (1976). Microbial Production of Nucleic Acid-Related Substances. Kodansha Ltd., Tokyo and John Wiley & Sons, New York, London, Sydney, Toronto.

    Google Scholar 

  • Otani, M., Ihara, N., Umezawa, C. & Sano, K. (1986). Predominance of gluconate formation from glucose during germination of Bacillus megaterium QM B1551 spores. J. Bacteriol., 167, 148–52.

    CAS  Google Scholar 

  • Overend, W. G. & Stacey, M. (1955). Chemistry of ribose and deoxyribose. In The Nucleic Acids, Vol. I, ed. E. Chargaff & J. N. Davidson. Academic Press, New York, pp. 9–80.

    Google Scholar 

  • Perlman, D. (1979). Ketogenic fermentation processes. In Microbial Technology, Vol. II, ed. H. J. Peppier & D. Perlman. Academic Press, New York, San Francisco, London, pp. 173–7.

    Google Scholar 

  • Petersson, G. (1974). Gas-chromatographic analysis of sugars and related hydroxy acids as acyclic oxime and ester trimethylsilyl derivatives. Carbohydr. Res., 33, 47–61.

    Article  CAS  Google Scholar 

  • Phelps, F. P., Isbel, H. S. & Pigman, W. (1934). Mutarotation of beta-D-ribose and beta-l-ribose. J. Am. Chem. Soc, 56, 747–8.

    Article  CAS  Google Scholar 

  • Postma, P. W. & Lengeier, J. W. (1985). Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol. Rev., 49, 232–69.

    CAS  Google Scholar 

  • Postma, P. W. & Roseman, S. (1976). The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochim. biophys. Acta, 457, 213–57.

    CAS  Google Scholar 

  • Rebers, P. A. & Heidelberger, M. (1959). The specific polysaccharide of type VI Pneumococcus. I. Preparation, properties and reactions. J. Am. Chem. Soc, 81, 2415–19.

    Article  CAS  Google Scholar 

  • Rebers, P. A. & Heidelberger, M. (1961). The specific polysaccharide of type VI Pneumococcus, II. The repeating unit. J. Am. Chem. Soc, 83, 3056–9.

    CAS  Google Scholar 

  • Roberts, W. K., Buchanan, J. G. & Baddiley, J. (1963). The specific substance from Pneumococcus type 34(41). The structure of a phosphorus-free epeating unit. Biochem. J., 88, 1–7.

    CAS  Google Scholar 

  • Roseman, S. (1969). The transport of carbohydrates by a bacterial phosphotransferase system. J. Gen. Physiol, 54, 138s–180s.

    Article  CAS  Google Scholar 

  • Sable, H. Z. (1950). Phosphorylation of ribose and adenosine in yeast extracts. Proc. Soc. exptl. Biol. Med., 75, 215–19.

    CAS  Google Scholar 

  • Sable, H. Z. (1952). Pentose metabolism in extracts of yeast and mammalian tissues. Biochim. biophys. Acta, 8, 687–97.

    Article  CAS  Google Scholar 

  • Saier, M. H. Jr (1977). Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships. Bacteriol. Rev., 41, 856–71.

    CAS  Google Scholar 

  • Saito, N. & Sugiyama, S. (1966). D-ribose formation by Pseudomonas reptilivora. Agric. Biol. Chem., 30, 841–6.

    Article  CAS  Google Scholar 

  • Sano, K., Yokozeki, K. & Mitsugi, K. (1977a). Enzymatic production of 5-amino-4-imidazole-carboxamide from 5-amino-4-imidazole-carboxamide-riboside by Bacillus thiaminolyticus. Optimal conditions for the enzyme formation and the enzymaticreaction. Agric. Biol Chem., 41, 2331–4.

    CAS  Google Scholar 

  • Sano, K., Yokozeki, K. & Mitsugi, K. (1977b) Screening of micro-organisms producing 5-amino-4-imidazole-carboxamid and D-ribose from 5-amino-4-imidazole-carboxamide-riboside. Agric. Biol. Chem., 41, 2463–4.

    Article  CAS  Google Scholar 

  • Sano, K., Yokozeki, K. & Mitsugi, K. (1977b) Screening of micro-organisms producing 5-amino-4-imidazole-carboxamid and D-ribose from 5-amino-4-imidazole-carboxamide-riboside. Agric. Biol. Chem., 41, 2463–4.

    Article  CAS  Google Scholar 

  • Sasajima, K. (1976). D-Ribose. In Microbial Production of Nucleic Acid-Related Substances, ed. K. Ogata, S. Kinoshita, T. Tsunoda & K. Aida. Kodansha Ltd, Tokyo and John Wiley & Sons, New york, London, Sydney, Toronto, pp. 199–204

    Google Scholar 

  • Sasajima, K. & Kumada, T. (1979). Deficiency of D-glucose transport in transketolase mutant of Bacillus subtilis. Inst. Ferment. Res. Commun., 9, 17–26.

    CAS  Google Scholar 

  • Sasajima, K. & Kumada, T. (1981a). Change in the regulation of enzyme synthesis under catabolite repression in Bacillus subtilis pleiotropic mutant lacking transketolase. Agric. Biol. Chem., 45, 2005–12.

    Article  CAS  Google Scholar 

  • Sasajima, K. & Kumada, T. (1981b) Cell surface change of Bacillus subtilis pleiotropic mutant lacking transketolase. Inst. Ferment. Res. Commun., 10, 3–9.

    Google Scholar 

  • Sasajima, K. & Kumada, T. (1983a). Cell surface change of Bacillus subtilis pleiotropic mutant lacking transketolase: properties of various revertant strains. Inst. Ferment. Res. Commun., 11, 3–9.

    Google Scholar 

  • Sasajima, K. & Kumada, T. (1983b). Deficiency of flagellation in a Bacillus subtilis pleiotropic mutant lacking transketolase. Agric. Biol. Chem., 47, 1375–6.

    Article  CAS  Google Scholar 

  • Sasajima, K. & Yoneda, M. (1971). Carbohydrate metabolism mutants of a Bacillus species. Part II. D-ribose accumulation by pentose phosphate pathway mutants. Agric. Biol. Chem., 35, 509–17.

    Article  CAS  Google Scholar 

  • Sasajima, K. & Yoneda, M. (1974a). Simple procedures for the preparation of D-ribose 5-phosphate ketol-isomerase, D-ribulose 5-phosphate 3-epimerase and D-sedoheptulose 7-phosphate: D-glyceraldehyde 3-phosphate glycolaldehydetrans-ferase. Agric. Biol. Chem., 38, 1297–1303.

    Article  CAS  Google Scholar 

  • Sasajima, K. & Yoneda, M. (1974b). D-Sedoheptulose 7-phosphate: D-glyceraldehyde 3-phosphate glycolaldehydetransferase and D-ribulose 5-phosphate 3-epimerase mutants of a Bacillus species. Agric. Biol. Chem., 38, 1305–10.

    Article  CAS  Google Scholar 

  • Sasajima, K. & Yoneda, M. (1984). Production of pentoses by micro-organisms. Biotechnol. Genet. Engineer. Rev., 2, 175–213.

    CAS  Google Scholar 

  • Sasajima, K., Nogami, I. & Yoneda, M. (1970). Carbohydrate metabolism mutants of a Bacillus species. Part I. Isolation of mutants and their inosine formation. Agric. Biol. Chem., 34, 381–9.

    Article  CAS  Google Scholar 

  • Sasajima, K., Fukuhara, T., Matsukura, A., Nakanishi, I. & Yoneda, M. (1972). D-ribose production by pentose phosphate pathway mutants of Bacillus. Paper presented at the Fourth International Fermentation Symposium, Kyoto, 19–25 March.

    Google Scholar 

  • Sasajima, K., Kumada, T. & Yokota, A. (1977). A pleiotropy in carbohydrate metabolism of Bacillus subtilis mutant lacking transketolase. Inst. Ferment. Res. Commun., 8, 69–77.

    CAS  Google Scholar 

  • Sasajima, K., Yokota, A. & Kumada, T. (1985a). Alteration of the membrane composition of Bacillus subtilis pleiotropic mutant lacking transketolase. Inst. Ferment. Res. Commun., 12, 5–18.

    Google Scholar 

  • Sasajima, K., Yokota, A. & Yoneda, M. (1985b). D-ribose production by bacteria. Kagaku to Seibutsu, 23, 240–8 (in Japanese).

    Google Scholar 

  • Schlenk, F. & Smith, R. L. (1953). The mechanism of adenine thiomethylriboside formation. J. Biol. Chem., 204, 27–34.

    CAS  Google Scholar 

  • Simonart, P. & Godin, P. (1951). Production de pentoses, d’acide 2-céto gluconique et d’acide glucuronique par Penicillium brevi-compactum. Bull. Soc. Chim. Belg., 60, 446–8.

    Article  CAS  Google Scholar 

  • Slechta, L. & Johnson, L. E. (1976). A new metabolite from Streptomyces hygro-scopicus. I. Fermentation and isolation. J. Antibiot., XXIX, 685–7.

    Google Scholar 

  • Smit, J., Kamio, Y. & Nikaido, H. (1975). Outer membranes of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. J. Bacteriol., 124, 942–58.

    CAS  Google Scholar 

  • Smith, D. C. C. (1955). The preparation of D-ribose and 2-deoxy-D-ribose from glucose. Chem. Ind., 1955, 92–3.

    Google Scholar 

  • Sowden, J. C. (1950). The condensation of nitromethane with D-erythrose and 2, 4-benzylidene-D-erythrose. J. Am. Chem. Soc., 72, 808–11.

    Article  CAS  Google Scholar 

  • Steiger, M. (1936). Zur Herstellung von D-ribose. Helv. Chim. Acta, 19, 189–95.

    Article  CAS  Google Scholar 

  • Stroh, H.-H. von, Dargel, D. & Haussier, R. (1964). Vergleichende Untersuchungen zur Synthese von D-ribose aus D-Glucose. J. Prakt. Chem., 23, 309–17.

    Article  CAS  Google Scholar 

  • Suhadolnik, R. J. (1970). Nucleoside Antibiotics. Wiley-Interscience, New York, London, Sydney, Toronto.

    Google Scholar 

  • Suzuki, T., Tanaka, N., Tomita, F., Mizuhara, K. & Kinoshita, S. (1963). Bacterial accumulation of ribose and ribose 5-phosphate. J. Gen. Appl. Microbiol., 9, 457–8.

    Article  CAS  Google Scholar 

  • Suzuki, U., Shimamura, T. & Matsunaga, S. (1914). Studies on oryzanin VI. J. Tokyo Chem. Soc, 34, 1123–75 (in Japanese).

    Google Scholar 

  • Suzuki, U., Odaka, S. & Mori, T. (1924). Ãœber einen neuen schwefelhaltigen Bestandteil der Hefe. Biochem. Z., 154, 278–89.

    CAS  Google Scholar 

  • Thérisod, M., Fischer, J. C. & Estramareix, B. (1981). The origin of the carbon chain in the thiazole moiety of thiamine in Escherichia coli: incorporation of deuterated l-deoxy-D-threo-2-pentulose. Biochem. biophys. Res. Commun., 98, 374–9.

    Article  Google Scholar 

  • Vanderheiden, B. S. (1970). Phosphate esters in human erythrocytes. VII. Further evidence for ribose 1, 5-diphosphate as a natural metabolite. Biochim. Biophys. Acta, 215, 242–8.

    CAS  Google Scholar 

  • Waller, C. W., Eryth, P. W., Hutchings, B. L. & Williams, J. H. (1953). Achromycin. The structure of the antibiotic puromycin I. J. Am. Chem. Soc, 75, 2025.

    Article  CAS  Google Scholar 

  • Warburg, O. & Christian, W. (1936). Verbrennung von Robison-Ester durch Triphospho-Pyridin-Nucleotid. Biochem. Z., 287, 440–1.

    CAS  Google Scholar 

  • Warburg, O. & Christian, W. (1937). Abbau von Robisonester durch Triphospho-Pyridine-Nucleotid. Biochem. Z., 292, 287–95.

    CAS  Google Scholar 

  • Warburg, O., Christian, W. & Griese, A. (1935). Wasserstoffübertragendes Co-Ferment, seine Zusammensetzung und Wirkungsweise. Biochem. Z., 282, 157–205.

    CAS  Google Scholar 

  • Ward, J. B. (1981). Teichoic and teichuronic acids: biosynthesis, assembly, and location. Microbiol. Rev., 45, 211–43.

    CAS  Google Scholar 

  • Warren, S. C. (1968). Sporulation in Bacillus subtilis. Biochemical changes. Biochem. J., 109, 811–18.

    CAS  Google Scholar 

  • Watson, J. D. & Crick, F. H. C. (1953). Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature, Lond., 171, 737–8.

    Article  CAS  Google Scholar 

  • Weimberg, R. (1961). Pentose oxidation by Pseudomonas fragi. J. Biol. Chem., 236, 629–35.

    CAS  Google Scholar 

  • Wessely, F. & Wang, S. (1938). Ãœber ein Vorkommen von Adonit. Monatsh. Chem., 72, 168.

    Article  CAS  Google Scholar 

  • Williams, J. C., Verani, R., Alcala, H., Butler, I. J. & Rosenberg, H. S. (1986). Glutamyl ribose-5-phosphate storage disease: nephrotic syndrome and cerebral atrophy. Pediatr. Pathol., 5, 277–94.

    Article  CAS  Google Scholar 

  • Willis, R. C. & Furlong, C. E. (1974). Purification and properties of a ribose binding protein from Escherichia coli. J. Biol. Chem., 249, 6926–9.

    CAS  Google Scholar 

  • Windholz, M., Budavari, S., Blumetti, R. F. & Otterbein, E. S. (1983). The Merck Index. Merck & Co., Rahway, p. 1185.

    Google Scholar 

  • Woisetschläger, M. & Högenauer, G. (1986). Cloning and characterization of the gene encoding 3-deoxy-D-manno-octulosonate 8-phosphate synthetase from Escherichia coli. J. Bacteriol., 168, 437–9.

    Google Scholar 

  • Wood, T. (1985). The Pentose Phosphate Pathway. Academic Press, Orlando, San Diego, New York, Austin, London, Montreal, Sydney, Tokyo, Toronto.

    Google Scholar 

  • Yokota, A. & Sasajima, K. (1981). Derepressed syntheses of sporulation marker enzymes in a Bacillus species mutant. Agric. Biol. Chem., 45, 2417–23.

    Article  CAS  Google Scholar 

  • Yokota, A. & Sasajima, K. (1983). Enzymatic formation of a new monosaccharide, l-deoxy-D-altro-heptulose phosphate, from DL-acetoin and D-ribose 5-phosphate by a transketolase mutant of Bacillus pumilus. Agric. Biol. Chem., 47, 1545–53.

    Article  CAS  Google Scholar 

  • Yokota, A. & Sasajima, K. (1984a). Formation of l-deoxy-D-threo-pentulose and l-deoxy-L-threo-pentulose by cell-free extracts of micro-organisms. Agric. Biol. Chem., 48, 149–58.

    Article  CAS  Google Scholar 

  • Yokota, A. & Sasajima, K. (1984b) Formation of 1-deoxy-D-fructose, 1-deoxy-D-sorbose, 1-deoxy-D-tagatose and 1-deoxy-erythrulose by cell-free extracts of bacteria and Actinomycetes. Agric. Biol. Chem., 48, 1643–5.

    Article  CAS  Google Scholar 

  • Yokota, A. & Sasajima, K. (1985). Formation of 2,3-dideoxy-hex-4-ulosonic acid by carboligase activity of 2-ketoglutarate dehydrogenase in micro-organisms. Inst. Ferment. Res. Commun., 12, 19–33.

    Google Scholar 

  • Yokota, A. & Sasajima, K. (1986). Formation of 1-deoxy-ketoses by pyruvate dehydrogenase and acetoin dehydrogenase. Agric. Biol. Chem., 50, 2517–24.

    Article  CAS  Google Scholar 

  • Yokota, A., Sasajima, K. & Horii, S. (1978). Accumulation of a new monosaccharide, l-deoxy-D-alztro-heptulose (1-deoxy-sedoheptulose) by transketolase mutants of Bacillus pumilus. Agric. Biol. Chem., 42, 2245–52.

    Article  CAS  Google Scholar 

  • Yokota, A., Sasajima, K. & Yoneda, M. (1979). Reactivation of inactivated D-glucose dehydrogenase of a Bacillus species by pyridine and adenine nucleotides. Agric. Biol. Chem., 43, 271–8.

    Article  CAS  Google Scholar 

  • Zimmer, H.-G., Ibel, H., Suchner, U. & Schad, H. (1984). Ribose intervention in the cardiac pentose phosphate pathway is not species-specific. Science, 223, 712–4.

    Article  CAS  Google Scholar 

  • Zöllner, N., Reiter, S., Gross, M., Pongratz, D., Reimers, C. D. Gerbitz, K., Paetzke, I., Deufel, T. & Hübner, G. (1986). Myoadenylate deaminase deficiency: successful symptomatic therapy by high dose oral administration of ribose. Klin. Wochenschr, 64, 1281–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Sasajima, K., Yoneda, M. (1989). Microbial Production of d-Ribose. In: Vandamme, E.J. (eds) Biotechnology of Vitamins, Pigments and Growth Factors. Elsevier Applied Biotechnology Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1111-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1111-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6991-5

  • Online ISBN: 978-94-009-1111-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics