Skip to main content

Ceramic Matrix Composites

  • Chapter

Abstract

Advanced ceramics such as alumina, zirconia, silicon nitride and silicon carbide are characterised by good resistance to wear, oxidation and corrosion, when compared with metals and thermoplastics. However, the use of monolithic ceramics is often limited by their low mechanical reliability. Ceramic matrix composites, with refractory particles or fibres dispersed as a second phase in a ceramic matrix, are characterised by a higher degree of mechanical reliability, and may be the subject of industrial development for specific applications. The aim of this contribution is to give a survey of ceramic matrix composites, summarising the state of the art in their manufacture, their physical properties, and their potential industrial development in the near future. Special attention will be given to whisker reinforced ceramics that appear to be a very promising class of composites because of their good mechanical properties and their simple manufacturing routes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tani, E. et al. Effects of size of grains with fibre-like structure of Si3N4 on fracture toughness, J. Mater Sci Lett., 4 (1985) 1454–6.

    Article  CAS  Google Scholar 

  2. Rice, R W. Mechanisms of toughening in ceramic matrix composites, Ceram. Engng Sci. Proc., 5 (1985) 589–607.

    Article  Google Scholar 

  3. Ceramic composite issue, Am. Ceram. Soc. Bull., Special issue; 65 (1986) 288–380.

    Google Scholar 

  4. Ceramic composite issue, Am. Ceram. Soc. Bull., Special issue, 66 (1987) 303–76.

    Google Scholar 

  5. Ceramic matrix composites, Composites, Special issue, 18 (1987) 86–163.

    Google Scholar 

  6. Marshall, D. B. and Evans, A. G. Failure mechanisms in ceramic-fiber-ceramic matrix composites, J. Am. Ceram. Soc., 68 (1985) 225–31.

    Article  CAS  Google Scholar 

  7. Faber, K. T. and Evans, A. G. Crack deflection processes, Acta Metall, 31 (1983) 565–84.

    Article  Google Scholar 

  8. Guide to selecting engineered materials, Advanced Materials and Processes, Special issue (1987) 82–3.

    Google Scholar 

  9. Evans, A G. and Faber, KL T. Crack growth resistance of microcracking brittle materials, J. Am. Ceram. Soc., 67 (1984) 255–60.

    Article  Google Scholar 

  10. Evans, A. G., Toughening mechanism in ZrO2 alloys. In: Science and technology of zirconia II, Claussen, N., Rühle, M. and Heuer, A. H. (eds), Columbus, Ohio, American Ceramic Society, 1984, pp. 193–212.

    Google Scholar 

  11. Rice, R. W. and Freiman, S. W. Grain-size dependence of fracture energy in ceramics: II, Models for noncubic materials, J. Am. Ceram. Soc., 64 (1981) 350–4.

    Article  CAS  Google Scholar 

  12. Evans, A G. and Heuer, A H. Transformation toughening in ceramics: martensitic transformations in crack-tip stress field, J. Am. Ceram. Soc., 63 (1980) 241–8.

    Article  CAS  Google Scholar 

  13. Budiansky, B., Hutchinson, J. and Lambroupolos, J. Continuum theory of dilatent transformation toughening in ceramics, Int. J. Solids Struct., 19 (1983) 337–55.

    Article  Google Scholar 

  14. Lange, F. F., Transformation toughening, J. Mater. Sci., 17 (1982) 225–55.

    Article  CAS  Google Scholar 

  15. Reed, J. S. and Lejus, A M. Affect of grinding and polishing on near–surface phase transformation in zirconia, Mater. Res. Bull, 12 (1977) 949–54.

    Article  CAS  Google Scholar 

  16. Heuer, A. H., Claussen, N., Kriven, W. M. and Rühle, M. Stability of tetragonal ZrO2 particles in ceramic matrices, J. Am. Ceram. Soc., 65 (1982) 642–50.

    Article  CAS  Google Scholar 

  17. Wilfinger, K. and Cannon, W. R Processing of transformation-toughened alumina, Ceram. Proceed. ACS, Sept./Oct. 1986, 13th Automotive Mat. Conf., Michigan, Nov. 1985.

    Google Scholar 

  18. Dutta, S. and Buzek, B. Microstructure strength and oxidation of a 10 wt% zittrite-Si3N4 ceramic, J. Am. Ceram. Soc., 67 (1984) 89–92.

    Article  CAS  Google Scholar 

  19. Lange, F. F. The interaction of a crack front with a second phase dispersion, Phil. Mag., 22 (1970) 983–92.

    Article  CAS  Google Scholar 

  20. Mazdiyasni, K. S. and Ruh, R, High/low modulus Si3N4-BN composite for improved electrical and thermal shock behaviour, J. Am. Ceram. Soc., 64 (1981) 415–19.

    Article  CAS  Google Scholar 

  21. Goeuriot-Launay, D., Brayet, G. and Thevelot, F. Boron nitride effect on the thermal shock resistance of an alumina-based ceramic composite, J. Mater. Sci. Lett., 5 (1986) 940–2.

    Article  CAS  Google Scholar 

  22. Swanson, P. L. et al., Crack-interface grain bridging as a fracture resistance mechanism in ceramics, J. Am. Ceram. Soc., 70 (1987) 279–94.

    Article  CAS  Google Scholar 

  23. Marshall, D. B. and Ritter, J. E. Reliability of advanced structural ceramics and ceramic–matrix composites — a review, Am. Ceram. Soc. Bull, 66 (1987) 309–17.

    CAS  Google Scholar 

  24. Rühle, M., Dalgleish, B. J. and Evans, A. G., On the toughening of ceramics by whiskers, Scripta Metall, 21 (1987) 681–6.

    Article  Google Scholar 

  25. Porter, J. R., Lange, F. F. and Chokshi, A. H. Processing and creep performance of SiC-whiskers-reinforced A12O3, Am. Ceram. Soc. Bull, 66 (1987) 343–7.

    CAS  Google Scholar 

  26. Key advanced ceramic markets — Part II, High-Tech Materials Alert, August (1987), pp. 5–7.

    Google Scholar 

  27. Multitoughening ceramic, Technical Ceramics Bulletin, 2, 2 (1987) 14.

    Google Scholar 

  28. Advanced engine project of US Department Energy, Industrie Céramique, 815 (1987) 232–5.

    Google Scholar 

  29. Buljan, S. T. and Sarin, V. K. Silicon nitride-based composites, Composites, 18 (1987) 99–106.

    Article  CAS  Google Scholar 

  30. Buljan, S. T. and Sarin, V. fc Silicon nitride-based composites. In: Sintered metal ceramic composites, Upadhyaya, G. S. (ed.), Amsterdam, Elsevier, 1984, pp. 455–68.

    Google Scholar 

  31. Kamijo, E. et al Electrical discharge machinable Si3N4 ceramics, Sumitomo Electric Technical Review, 24 (1985) 183–90.

    Google Scholar 

  32. SiC–Si3N4 composite, High–Tech Materials Alert, August (1986) 9.

    Google Scholar 

  33. Mah, T., Mendiratta, M. G., Katz, A. P. and Mazdiyasni, K. S. Recent developments in fiber-reinforced high temperature ceramic composites, Am. Ceram. Soc. Bull, 66 (1987) 304–17.

    CAS  Google Scholar 

  34. Prewo, K, M., Brennan, J. J. and Layden, G. JL Fiber reinforced glasses and glass-ceramics for high performance applications, Am. Ceram. Soc. Bull, 65 (1986) 305–13.

    CAS  Google Scholar 

  35. Claussen, N. and Petzow, G. Whisker-reinforced oxide ceramics, J. Physique, C1 (1986) 693–702.

    Google Scholar 

  36. Kolaska, H., Dreyer, KL and Reiter, N. Property improvements in various ceramics through whisker reinforcement, PM’86, Düsseldorf, July, 1986.

    Google Scholar 

  37. Double fracture toughness of ceramics, Inside R&D, June (1987) 3.

    Google Scholar 

  38. Rothmann, E. R. and Torre, J. P., The use of ceramics in automotive engines, Present Status and Development of Ceramics in Mechanical Industries, Saint-Ouen, France, June 1987.

    Google Scholar 

  39. Broquere, B., From carbon-carbon composites to carbon-ceramic composites, Ceramic-Ceramic Composites, Mons Belgium, April 1987.

    Google Scholar 

  40. Petiau, C. and Verneuil, J. C., Thermal insulation of Hermes shuttle, Thermal Transfer at High Temperature, Chatenay-Malabry, France, May 1987.

    Google Scholar 

  41. Brook, R. J., Stress development during the sintering of composite ceramic systems, Ceramic-Ceramic Composites, Mons, Belgium, April 1987.

    Google Scholar 

  42. Guo, J. et al Carbon fibre–reinforced silicon nitride composite, J. Mater. Sci., 17 (1982) 3611–16.

    Article  CAS  Google Scholar 

  43. Cornie, J. A et al. Processing of metal and ceramic matrix composites, Am. Ceram. Soc. Bull, 65 (1986) 293–303.

    CAS  Google Scholar 

  44. Stinton, D. P., Caputo, A J. and Lowden, R. A Synthesis of fiber-reinforced SiC composites by chemical vapor infiltration, Am. Ceram. Soc. Bull, 65 (1986) 347–50.

    CAS  Google Scholar 

  45. Coyle, T. W., Guyot, M. H. and Jamet, J. F., Mechanical behaviour of a microcracked ceramic composite, Ceram. Engng Sci. Proc., 7 (1986) 947–57.

    Article  CAS  Google Scholar 

  46. Corbin, N. D., Rossetti, G. A and Hartline, S. D. Microstructure-property relationships for SiC filament-reinforced RBSN, Ceram. Engng Sci. Proc., 7 (1986) 958–68.

    Article  CAS  Google Scholar 

  47. Fitzer, E. and Gadow, R. Fiber-reinforced silicon carbide, Am. Ceram. Soc. Bull., 65 (1986) 326–35.

    CAS  Google Scholar 

  48. Lamicq, P. J., Bernhart, G. A., Dauchier, M. M. and Mace, J. G. SiC/SiC composite ceramics, Am. Ceram. Soc. Bull, 65 (1986) 236–8.

    Google Scholar 

  49. Wilfinger, K. and Cannon, W. R. Processing of transformation-toughened alumina, Ceram. Engng Sci. Proc., 7 (1986) 1169–81.

    Article  CAS  Google Scholar 

  50. Takas, F., Cannon, W. R. and Danforth, S. C. Colloidal processing of a SiC whisker-reaction bonded Si3N4 composite, Ceram. Engng Sci. Proc., 7 (1986) 990–3.

    Article  Google Scholar 

  51. Mathieu, P. and Calès, B., Processing and properties of whiskers reinforced zirconia-toughened alumina, Ceramic-Ceramic Composites, Mons, Belgium, April 1987.

    Google Scholar 

  52. Calès, B., Mathieu, P. and Torre, J. P., Preparation and characterization of whiskers reinforced zirconia toughened alumina, Science of Ceramics 14, Canterbury, Sept. 1987.

    Google Scholar 

  53. Sarin, V. K. and Rtihle, M. Microstructural studies of ceramic-matrix composites, Composites, 18 (1987) 129–34.

    Article  CAS  Google Scholar 

  54. Lunberg, R. et al., Processing of whiskers-reinforced ceramics, Composites, 18 (1987) 125–7.

    Article  Google Scholar 

  55. Borom, M. P. and Lee, M. Effect of heating rate on densification of alumina-titanium carbide composites, Adv. Ceram. Mater., 1 (1986) 335–40.

    CAS  Google Scholar 

  56. Blake, R. D. and Meet, T. T. Microwave processed composite materials, J. Mater. Sci. Lett., 5 (1986) 1097–8.

    Article  CAS  Google Scholar 

  57. Tiegs, T. N. and Becher, P. F. Sintered Al2O3-SiC whisker composites, Am. Ceram. Soc. Bull, 66 (1987) 339–42.

    CAS  Google Scholar 

  58. Hoffmann, M. J., Greil, P. and Petzow, G., Pressureless sintering of SiC whisker reinforced silicon nitride, Science of Ceramics 14, Canterbury, Sept 1987.

    Google Scholar 

  59. Becher, P. F. and Wei, G. C. Toughening behaviour in SiC-whisker-reinforced alumina, J. Am. Ceram. Soc., 67 (1984) C267–C269.

    Article  CAS  Google Scholar 

  60. Vigneau, J. and Bordel, P. Influence of the microstructure of the composite ceramic tools on their performance when machining nickel alloys, CIRP Annals, 36 (1987) 13–16.

    Article  CAS  Google Scholar 

  61. Lundberg, R et al., Glass encapsulated HIP-ing of SiC whisker reinforced ceramic composites, International Conference on Hot Isostatic Pressing, Liilea, Sweden, June 1987.

    Google Scholar 

  62. Takemura, H., Miyamoto, Y. and Koizumi, M., Fabrication of dense Si3N4-SiC whisker composite without additives by HIP-ing, International Conference on Hot Isostatic Pressing, Liilea, Sweden, June 1987.

    Google Scholar 

  63. Sainfort, P., Ceramic-ceramic composites, Cegedur-Pechiney Internal Report, 1987.

    Google Scholar 

  64. Tiegs, T. N. and Becher, P. F. Thermal shock resistance of an alumina-SiC whisker composite, J. Am. Ceram. Soc., 70 (1987) C109–C111.

    Article  Google Scholar 

  65. Lundberg, R., Kahlman, L., Pompe, R and Carlsson, R SiC-whisker reinforced Si3N4 composites, Am. Ceram. Soc. Bull., 66 (1987) 330–3.

    CAS  Google Scholar 

  66. Shalek, P. D., Petrovic, J. J., Hurley, G. F. and Gac, F. D. Hot-pressed SiC whisker/Si3N4 matrix composites, Am. Ceram. Soc. Bull, 65 (1986) 351–6.

    CAS  Google Scholar 

  67. Karpman, M. and Clarck, J. Economics of whisker reinforced ceramics, Composites, 18 (1987) 121–4.

    Article  Google Scholar 

  68. Ceramic composite licence opportunity, High-Tech Materials Alert, 4 (1987) 3.

    Google Scholar 

  69. Bracke, P., Schurmans, H. and Verhoest, J. Ceramic matrix composites. In: Inorganic fibers and composite materials, Oxford, Pergamon Press, 1984, pp. 97–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Cales, B. (1989). Ceramic Matrix Composites. In: Riley, F.L. (eds) 2nd European Symposium on Engineering Ceramics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1105-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1105-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6988-5

  • Online ISBN: 978-94-009-1105-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics