Skip to main content

Geothermal Exploration

  • Chapter
Geothermal Resources

Abstract

The objective is to find geothermal phenomena. The appropriate geological environments are restricted mostly to regions on or near the active margins of tectonic plates at which crustal material is being either produced or destroyed and, although there may be the odd exception (e.g. Hawaii), invariably there must be a heat source. Whilst sites are determined by this factor and by the regional geology, surface phenomena or borehole manifestations of hydrological significance are recognition markers. However, they depend upon these heat sources and also upon the presence of a transport medium, normally water, responsible for the appearance of heat at the surface, together with adequate permeability in the relevant rocks.

‘Thou shalt be visited of the Lord of Hosts with thunder, and with earthquake, and great noise, with storm and tempest, and the flame of devouring fire.’

Isaiah, 29:6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, M. L., 1978. Heat extraction from hot, dry crustal rock. Pure Appl. Geophys., 117, 290–6.

    Article  Google Scholar 

  2. Muffler, L. J. P. (ed.), 1979. Assessment ofGeothermal Resources ofthe United States-1978, US Geol. Surv. Circ. No. 790, 163 pp.

    Google Scholar 

  3. Lumb, J. T., 1981. Prospecting for geothermal resources. In: Geothermal Systems: Principles and Case Histories, ed. L. Rybach and L. J. P. Muffler, pp.77–103. John Wiley & Sons, Chichester, 359pp.

    Google Scholar 

  4. Browne, P. R. L., 1970. Hydro thermal alteration as an aid in investigating geothermal fields. Geothermics, Sp. issue 2(2), 564–70.

    Article  Google Scholar 

  5. Grindley, G. W. and Browne, P. R. L., 1976. Structural and hydrologic factors controlling the permeabilities of some hot-water geothermal fields. Proc. 2nd UN Symp., Part 1, pp. 377–86. US Govt Pripting Office, Washington, DC, USA.

    Google Scholar 

  6. Hatherton, T., Macdonald, W. J. P. and Thompson, G. E. K., 1966. Geophysical methods in geothermal prospecting in New Zealand. Bull. Volcanologique, 29, 485–98.

    Article  Google Scholar 

  7. Dickinson, D. J., 1976. An airborne infrared survey of the Tauhara geothermal field, New Zealand. Proc. 2nd UN Symp., Part 2, pp. 955–61. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  8. Goss, R. and Combs, J., 1976. Thermal conductivity measurements and prediction from geophysical well-log parameters with borehole application. Proc. 2nd UN Symp., Part 2, pp. 1019–27. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  9. Eckstein, Y., 1979. Heat flow and the hydrologic cycle: example from Israel. In: Terrestrial Heat Flow in Europe, ed. V. Cermak and L. Rybach. Springer- Verlag, Berlin.

    Google Scholar 

  10. Noble, J. W. and Ojiambo, S. B., 1976. Geothermal exploration in Kenya. Proc. 2nd UN Symp., Part 1, pp. 189–204. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  11. Meidav, T., 1970. Application of electrical resistivity and gravimetry in deep geothermal exploration. Geothermics, Sp. issue 2(2), 203–310.

    Google Scholar 

  12. Zohdy, A. A. R, Anderson, L. A. and Muffler, L. J. P., 1973. Resistivity, self- potential, and induced polarization surveys of a vapor-dominated geothermal system. Geophysics , 38, 1130–44.

    Article  Google Scholar 

  13. Dey, A. and Morrison, H. F., 1977. An analysis of the bipole-dipole method of resistivity surveying. Geothermics, 6, 47–81.

    Article  Google Scholar 

  14. Risk, G. F., 1976. Detection of buried zones of fissured rock in geothermal fields using resistivity anisotropy measurements. Proc. 2nd UN Symp., Part 2, pp. 1191–8. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  15. Jiracek, G. R. and Gerety, M. T., 1978. Comparison of surface and downhole resistivity mapping of geothermal reservoirs in New Mexico. Geothermal Resources Council Trans., 2, 335–6.

    Google Scholar 

  16. Bibby, H. M., 1978. Direct current resistivity modelling for axially symmetric bodies using the finite element method. Geophysics, 43, 550–62.

    Article  Google Scholar 

  17. Jiracek, G. R., Smith, C. and Dorn, C. A., 1976. Deep geothermal exploration in New Mexico using electrical resistivity.Proc. 2nd UN Symp., Part 2, pp. 1095–102. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  18. Hohmann, G. W., Fox, R. C. and Rijo, L., 1978. Topographic effects in resistivity surveys. Geothermal Resources Council Trans., 2, 287–90.

    Google Scholar 

  19. Ross, H. P. and Ward, S. H., 1984. Borehole Electrical Geophysical Methods: a review of the state-of-the-art and preliminary evaluation of the application of fracture mapping in geothermal systems. University of Utah Research Institute, Earth Sciences Lab. Rept DOE/SAN/12196–2.

    Google Scholar 

  20. Yang, F. W. and Ward, S. H., 1985. Single-borehole and cross-borehole resistivity anomalies of thin ellipsoids and spheroids. Geophysics, 50, 637–55.

    Article  Google Scholar 

  21. Zhao, J. X., Rijo, L. and Ward, S. H., 1986. Effects of geologic noise on cross- borehole electrical surveys. Geophysics , 51(10), 1978–91.

    Article  Google Scholar 

  22. Anderson, L. A. and Johnson, G. R, 1978. Some observations of the self- potential effect in geothermal areas in Hawaii and Nevada. Geothermal Resources Council Trans., 2, 9–12.

    Google Scholar 

  23. Ernstson, K. and Scherer, H. U., 1986. Self-potential variations with time and their relation to hydrogeologic and meteorological parameters. Geophysics , 51(10), 1967–77.

    Article  Google Scholar 

  24. Lumb, J. T. and Macdonald, W. J. P., 1970. Near-surface resistivity surveys of geothermal areas using the electromagnetic method. Geothermics, Sp. issue 2(2), 311–17.

    Article  Google Scholar 

  25. Keller, G. V., 1970. Induction methods in prospecting for hot water. Geothermics, Sp. issue 2(2), 318–32.

    Article  Google Scholar 

  26. Morrison, H. F., Goldstein, N. E., Hoversten, M., Oppliger, G. and Riveros, C., 1978. Controlled-source electromagnetic system. In: Geothermal Exploration Technology: Annual Rept 1978, Lawrence Berkeley Laboratory, University of California, pp. 9–12.

    Google Scholar 

  27. Goldman, Y., Hubans, C., Nicoletis, S. and Spitz, S., 1986. A finite-element solution for the transient electromagnetic response of an arbitrary two- dimensional resistivity distribution. Geophysics, 51(7), 1450–61.

    Article  Google Scholar 

  28. Sheng, Y., 1986. A single apparent resistivity expression for long-offset transient electromagnetics.Geophysics, 51(6), 1291–7.

    Article  Google Scholar 

  29. Spies, B. R. and Eggers, D. E., 1986. The use and misuse of apparent resistivity in electromagnetic methods. Geophysics, 51(7), 1462–71.

    Article  Google Scholar 

  30. Mörner, N.-A., 1986. The lithospheric geomagnetic field: origin and dynamics of long wavelength anomalies.Physics of the Earth and Planetary Interiors, 44, 36–72.

    Google Scholar 

  31. Beamish, D., 1986. Geoelectric structural dimensions from magnetotelluric data: methods of estimation, old and new. Geophysics, 51(6), 1298–309.

    Article  Google Scholar 

  32. Jiracek, G. R, Rodi, W. L. and Vanyan, L. L., 1987. Implications of magnetotelluric modeling for the deep crustal environment in the Rio Grande Rift. Physics of the Earth and Planetary Interiors, 45, 179–92.

    Article  Google Scholar 

  33. Beyer, H., Morrison, H. F. and Dey, A., 1976. Electrical exploration of geothermal systems in the Basin and Range valleys of Nevada. Proc. 2nd UN Symp., Part 2, pp. 889–94. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  34. Swanberg, C. A., 1976. The Mesa geothermal anomaly, Imperial Valley, California; a comparison and evaluation of results obtained from surface geophysics and deep drilling. Proc. 2nd UN Symp., Part 2, pp. 1217–29. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  35. Baba, K., 1976. Gravimetric survey of geothermal areas in Kurikoma and elsewhere in Japan. Proc. 2nd UN Symp., Part 2, pp. 865–70. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  36. Isherwood, W. F., 1976. Gravity and magnetic studies of the The Geysers- Clear Lake geothermal region, California, USA. Proc. 2nd UN Symp., Part 2, pp. 1065–73. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  37. Hochstein, M. P. and Hunt, T. M., 1970. Seismic, gravity and magnetic studies, Broadlands geothermal field. Geothermics, Sp. issue 2(2), 333–46.

    Article  Google Scholar 

  38. Hunt, T. M., 1977. Recharge of water in Wairakei geothermal field determined from repeat gravity measurements.NZ J. Geol. Geophys., 20, 303–17.

    Google Scholar 

  39. Allis, R. G. and Hunt, T. M., 1986. Analysis of exploitation-induced gravity changes at Wairakei geothermal field. Geophysics, 51(8), 1647–60.

    Article  Google Scholar 

  40. Pálmason, G., 1976. Geophysical methods in geothermal exploration. Proc. 2nd UN Symp., Part 2, pp. 1175–84. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  41. Ritz, M. and Vassal, J., 1986. Geoelectrical structure of the northern part of the Senegal basin from joint interpretation of magnetotelluric and geomagnetic data.J. Geophys. Res., 91(B10), 10443–56.

    Article  Google Scholar 

  42. Ritz, M. and Vassal, J., 1987. Geoelectromagnetic measurements across the southern Senegal basin (West Africa). Physics of the Earth and Planetary Interiors, 45, 75–84.

    Article  Google Scholar 

  43. Brozena, J. M., 1984. A preliminary analysis of the NRL airborne gravity system. Geophysics, 49, 1060–9.

    Article  Google Scholar 

  44. Eckhardt, D. H., 1986. Isomorphic geodetic and electrical networks: an application to the analysis of airborne gravity gradiometer survey data. Geophysics, 51(11), 2145–55.

    Article  Google Scholar 

  45. Jekeli, C., White, J. V. and Goldstein, J. D., 1985. A review of data processing in gravity gradiometry. Paper presented at 3rd Int. Symp. on Inertial Techniques for Surveying and Geodesy, Banff.

    Google Scholar 

  46. Valliant, H. D., Gagnon, C. and Halfpenny, J. F., 1986. An inherently linear electrostatic feedback method for gravity meters. J. Geophys. Res., 91(B10), 10463–9.

    Article  Google Scholar 

  47. Whiteford, P. C., 1976. Studies of the propagation and source location of geothermal seismic noise. Proc. 2nd UN Symp., Part 2, pp. 1263–71. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  48. Iyer, H. M. and Hitchcock, T., 1976. Seismic noise measurements in Yellowstone National Park. Geophysics, 39, 389–400.

    Article  Google Scholar 

  49. McEvilly, T. V., Schlechter, B. and Mayer, E. L., 1978. East Mesa seismic study. In: Geothermal Exploration Technology: Annual Rept 1978, Lawrence Berkeley Laboratory, University of California, USA, pp. 23–5.

    Google Scholar 

  50. Evison, F. F., Robinson, R. and Arabasz, W. J., 1976. Microearthquakes, geothermal activity and structure, central North Island, New Zealand. NZ J. Geol. Geophys., 19, 625–37.

    Google Scholar 

  51. Bhattacharya, S. N., Parkash, C. and Srivastava, H. N., 1986. Microearthquake observations around Thien Dam in northwest Himalayas. Physics of the Earth and Planetary Interiors, 44, 169–78.

    Article  Google Scholar 

  52. Yuanzhang, D., Anyu, X. and Yiming, C., 1986. Induced earthquakes in Zhelin reservoir, China. Physics of the Earth and Planetary Interiors, 44, 107–14.

    Article  Google Scholar 

  53. Patil, D. N., Bhosale, V. N., Guha, S. K. and Powar, K. B., 1986. Reservoir induced seismicity in the vicinity of Lake Bhatsa, Maharashtra, India. Physics of the Earth and Planetary Interiors, 44, 73–81.

    Article  Google Scholar 

  54. Steeples, D. W. and Iyer, H. M., 1976. Teleseismic P-wave delays in geothermal exploration. Proc. 2nd UN Symp., Part 2, pp. 1199–206. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  55. Ellis, A. J. and Mahon, W. A. J., 1977. Chemistry and Geothermal Systems. Academic Press, New York, 392 pp.

    Google Scholar 

  56. Fournier, R. O. and Truesdell, A. H., 1973. An empirical Na-K-Ca geothermometer for natural waters. Geochim. Cosmochim. Acta, 37,1255–75.

    Article  Google Scholar 

  57. Weissberg, B. G. and Wilson, P. T., 1977. Montmorillonites and the Na/K geothermometer. In: Geochemistry 1977, compiled by A. J. Ellis. New Zealand Dept Sci. Indust. Res. Bull. No. 218, pp. 31–4

    Google Scholar 

  58. D’Amore, F. and Panichi, C., 1980. Evaluation of deep temperatures of hydrothermal systems by a new gas geothermometer. Geochim. Cosmochim. Acta, 44, 549–56.

    Article  Google Scholar 

  59. D’Amore, F. and Nuti, S., 1977. Notes on the chemistry of geothermal gases. Geothermics, 6, 39–45.

    Article  Google Scholar 

  60. Truesdell, A. H. and Nehring, N. L., 1978/1979. Gases and water isotopes in a geochemical section across the Larderello, Italy, geothermal field. Pageoph., 117, 276–89.

    Article  Google Scholar 

  61. Sackett, W. M. and Moses Chung, H., 1979. Experimental confirmation of the lack of carbon isotope exchange between methane and carbon oxides at high temperature. Geochim. Cosmochim. Acta, 43, 273–6.

    Article  Google Scholar 

  62. Panichi, C, Nuti, S. and Noto, P., 1978. Remarks on the use of the isotope geothermometers in the Larderello geothermal field. Proc. Int. Atomic Energy Agency Symp. on Nuclear Techniques in Hydrology, München, FRG.

    Google Scholar 

  63. Dennen, W. H., Blackburn, W. H. and Quesada, A., 1970. Aluminium in quartz as a geothermometer. Cont. to Mineral, and Petrol., 27, 332–42.

    Article  Google Scholar 

  64. Browne, P. R. L. and Wodzicki, A., 1977. The aluminium-in-quartz geothermometer: a field test. In: Geochemistry 1977, compiled by A. J. Ellis. New Zealand Dept Sci. Indust. Res. Bull. No. 218, pp. 35–6.

    Google Scholar 

  65. Hulston, J. R, 1977. Isotope work applied to geothermal systems at the Institute of Nuclear Sciences, New Zealand. Geothermics, 5, 89–96.

    Article  Google Scholar 

  66. Fournier, R. O., 1981. 4. Application of water geochemistry to geothermal exploration and reservoir engineering. In:Geothermal Systems: Principles and Case Histories, ed. L. Rybach and L. J. P. Muffler, pp. 109–43. John Wiley & Sons, Chichester, 359 pp.

    Google Scholar 

  67. Kharaka, Y. K. and Barnes, I., 1973. SOLMNEQ: Solution-Mineral Equilibrium Computations. US Geol. Surv. Computer Center, US Dept of Commerce, National Technical Information Service, Springfield, Virginia 22151, USA, Rept PB-215899, 82 pp.

    Google Scholar 

  68. McKenzie, W. F. and Truesdell, A. H., 1977. Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes. Geothermics, 5, 51–61.

    Article  Google Scholar 

  69. Bodvarsson, G., 1960. Exploration and exploitation of natural heat in Iceland. Bull. Volcanol., 23, 241–50.

    Article  Google Scholar 

  70. Fournier, R. O. and Rowe, J. J., 1966. Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. Am. J. Sci., 264, 685–97.

    Article  Google Scholar 

  71. Busey, R. H. and Mesmer, R. E., 1977. Ionization equilibria of silicic acid and polysilicate formation in aqueous sodium chloride solutions to 300°C. Inorg. Chem., 16, 2444–50.

    Article  Google Scholar 

  72. Fournier, R. O. and Potter, R. W. II, 1979. Magnesium correction to the Na- K-Ca chemical geothermometer. Geochim. Cosmochim. Acta, 43, 1543–50.

    Article  Google Scholar 

  73. Lloyd, R. M., 1968. Oxygen isotope behavior in the sulfate-water system. J. Geophys. Res., 73, 6099–110.

    Article  Google Scholar 

  74. Mizutani, Y. and Rafter, T. A., 1969. Oxygen isotopic composition of sulfates—Part 3: Oxygen isotopic fractionation in the bisulfate ion-water system. New Zealand J. Sci., 12(1), 54–9.

    Google Scholar 

  75. Mizutani, Y., 1972. Isotopic composition and underground temperature of the Otake geothermal water, Kyushu, Japan. Geochem. J., Japan, 6(2), 67–73.

    Google Scholar 

  76. Fournier, R. O., Sorey, M. L., Mariner, R. H. and Truesdell, A. H., 1979. Chemical and isotopic prediction of aquifer temperatures in the geothermal system at Long Valley, California. J. Volcanol. Geotherm. Res., 5, 17–34.

    Article  Google Scholar 

  77. Craig, H., 1961. Isotopic variations in meteoric waters. Science, 133, 1702.

    Article  Google Scholar 

  78. Bottinga, Y., 1969. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane- hydrogen-water vapor. Geochim. Cosmochim. Acta, 33, 49–64.

    Article  Google Scholar 

  79. Richet, R, Bottinga, Y. and Javoy, M., 1977. A review of hydrogen, carbon, nitrogen,oxygen, sulfur, and chlorine stable isotope fractionation among gaseous molecules. Ann. Rev. Earth Planet. Sci., 5, 65–110.

    Article  Google Scholar 

  80. Arnason, B., 1977. The hydrogen and water isotope thermometer applied to geothermal areas in Iceland. Geothermics, 5, 75–80.

    Article  Google Scholar 

  81. Gunter, B. D. and Musgrave, B. C., 1971. New evidence on the origin of methane in hydrothermal gases. Geochim. Cosmochim. Acta, 35, 113–18.

    Article  Google Scholar 

  82. Truesdell, A. H. and Hulston, J. R., 1980. Isotopic evidence on environments of geothermal systems. In: Handbook of Environmental Isotope Geochemistry, ed. R Fritz and J. Ch. Fontes, pp. 179–226. Elsevier Scientific Publishing Company, Amsterdam, 545 pp.

    Google Scholar 

  83. Bottinga, Y. and Javoy, M., 1973. Comments on oxygen isotope geothermometry. Earth Planet. Sci. Lett., 20, 250–65.

    Article  Google Scholar 

  84. Bottinga, Y. and Javoy, M., 1975. Oxygen isotope partitioning among minerals in igneous and metamorphic rocks. Rev. Geophys. Space Phys., 13, 401–18.

    Article  Google Scholar 

  85. Javoy, M., 1977. Stable isotopes and geothermometry. Geol. Soc., London, 133, 609–36.

    Article  Google Scholar 

  86. Bottinga, Y. and Javoy, M., 1987. Comments on stable isotope geothermometry: the system quartz-water. Earth Planet. Sci. Lett., 84, 406–14.

    Article  Google Scholar 

  87. Blattner, P., Braithwaite, W. R. and Glover, R. B., 1983. New evidence on magnetite oxygen isotope geothermometers at 175° and 112° in Wairakei steam pipelines (New Zealand). Isotope Geosci., 1, 195–204.

    Google Scholar 

  88. Panichi, C., Ferrara, G. C. and Gonfiantini, R, 1977. Isotope thermometry in the Larderello (Italy) geothermal field. Geothermics, 5, 81–8.

    Article  Google Scholar 

  89. Celati, R., Noto, P., Panichi, C., Squarci, P. and Taffi, L., 1973. Interactions between the steam reservoir and surrounding aquifers in the Larderello geothermal field. Geothermics, 2, 174–85.

    Article  Google Scholar 

  90. Hobba, W. A., Fisher, D. W., Pearson, F. J. Jr and Chemerys, J. C., 1978. Hydrology and Geochemistry of Thermal Springs of the Appalachians, II. Geochemistry US Geol. Surv. Paper 1044-E.

    Google Scholar 

  91. Mazor, E., Levitte, D., Truesdell, A. H., Healy, J., Gat, J. and Nissenbaum, A., 1977.Mixing Models and Geothermometers Applied to the Warm (up to 60° C) Springs of the Jordan Rift Valley, Israel. Weizmann Institute (Israel), Int. Rept, 32 pp.

    Google Scholar 

  92. Craig, H., 1963. The isotopic geochemistry of water and carbon in geothermal areas. In: Nuclear Geology in Geothermal Areas, Spoleto, ed. E. Tongiorgi. Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa, Italy, pp. 17–53.

    Google Scholar 

  93. Fergusson, G. J. and Knox, F. B., 1959. The possibilities of natural radiocarbon as a ground water tracer in thermal areas. New Zealand J. Sci., 2>, 431–41.

    Google Scholar 

  94. D’Amore, F, 1975. Radon-222 survey in Larderello geothermal field, Italy, 1. Geothermics, 4, 96–108.

    Article  Google Scholar 

  95. Craig, H. and Lupton, J. E., 1976. Primordial neon, helium, and hydrogen in oceanic basalts. Earth Sci. Planet. Lett., 31, 369–85.

    Article  Google Scholar 

  96. Mazor, E., 1976. Atmospheric and radiogenic noble gases in thermal waters: their potential application to prospecting and steam production studies. In: Proc. 2nd UN Symp., Part 1, pp. 793–802. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  97. Ferrara, G, Gonfiantini, R. and Pistoia, P., 1963. Isotopie composition of argon from steam jets of Tuscany (Italy). In: Nuclear Geology in Geo thermal Areas, Spoleto, ed. E. Tongiorgi. Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa, pp. 267–75.

    Google Scholar 

  98. Stoker, A. K. and Kruger, P., 1976. Radon in geothermal reservoirs. In:Proc. 2nd UN Symp., pp. 1797–803. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  99. Kruger, P., Stoker, A. K. and Umana, A., 1977. Radon in geothermal reservoir engineering. Geothermics, 5, 13–20.

    Article  Google Scholar 

  100. Kononov, V. I. and Polak, B. G, 1976. Indicators of abyssal heat recharge of recent hydrothermal phenomena. In: Proc. 2nd UN Symp., pp. 767–73. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  101. Arnósson, S., Bjórnsson, A., Gislason, G. and Gudmundsson, G., 1976. Systematic exploration of the Krisuvik high temperature area, Reykjanes Peninsula, Iceland. Proc. 2nd UN Symp., Part 2, pp. 853–64. US Govt Printing Office, Washington, DC, USA.

    Google Scholar 

  102. James, R., 1970. Factors controlling borehole performance. Geothermics, Sp. issue 2(2), 1502–15.

    Article  Google Scholar 

  103. Wainwright, D. K., 1970. Subsurface and output measurements on geothermal bores in New Zealand. Geothermics, Sp. issue 2(2), 746–67.

    Google Scholar 

  104. Lam, H.-L. and Jones, F. W, 1986. An investigation of the potential for geothermal energy recovery in the Calgary area in southern Alberta, Canada, using petroleum exploration data. Geophysics, 51(8), 1661–70.

    Article  Google Scholar 

  105. Sproule Associates Ltd, 1977. Report on study of geothermal resources in Western Canada sedimentary basins from existing data, phase two: The Sproule Report, Earth Physics Branch, open-file 77–14.

    Google Scholar 

  106. Lam, H.-L. and Jones, F. W, 1984. An assessment of the low grade geothermal potential in a Foothills area off west-central Alberta. In: Energy Developments: New Forms, Renewahles, Conservation, ed. F. Curtis, pp. 273–8. Pergamon Press, Oxford.

    Google Scholar 

  107. Lam, H.-L. and Jones, F. W, 1985. Geothermal energy potential in the Hinton- Edson area of west-central Alberta. Can. J. Earth Sci., 22, 369–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Bowen, R. (1989). Geothermal Exploration. In: Geothermal Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1103-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1103-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6987-8

  • Online ISBN: 978-94-009-1103-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics