Skip to main content

Peritoneal Anatomy and Transport Physiology

  • Chapter
Replacement of Renal Function by Dialysis

Abstract

The peritoneum (Figure 1) is a living membrane that covers visceral organs, forms the visceral mesentery that connects loops of bowel, and reflects over the inner surface of the abdominal wall (1, 2). The peritoneum is continuous and forms a closed sack, which, because the space within contains only small amounts of fluid (probably less than 100 ml), usually is nearly collapsed. In an adult of normal size, the space can be enlarged by instillation of fluid; two or more liters of fluid can be accommodated without causing discomfort. The surface of the membrane is a shiny layer of mesothelial cells, beneath which lie supporting interstitium containing extracellular fluid, connective tissue fibers, blood vessels, and lymphatics. The visceral peritoneum is that part of the membrane that courses over the surface of visceral organs. As visceral peritoneum reflects from loops of bowel to form the visceral mesentery (connecting adjacent loops of bowel), the interstitium becomes interspersed between adjacent mesothelial layers. The parietal peritoneum is that portion of the membrane that covers the inner surface of the abdominal wall. The total surface area of the peritoneal mesothelium (parietal and visceral) is believed to approximate the surface area of skin, which, in most adults, is 1 to 2m2 (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cunningham RS: The physiology of the serous membranes. Physiol Rev 6: 242, 1926

    Google Scholar 

  2. Putnam TJ: The living peritoneum as a dialyzing membrane. Am J Physiol 63: 547, 1922–1923

    Google Scholar 

  3. Henderson LW: Peritoneal dialysis. In: Clinical Aspects of Uremia and Dialysis, edited by Massry SG, Sellers AL, Sprinfield IL, Charles C Thomas, 1976, p 555

    Google Scholar 

  4. Nolph KD, Popovich RP, Ghods AJ, Twardowski Z: Determinants of low clearances of small solutes during peritoneal dialysis. Kidney Int 13: 117, 1978

    Article  PubMed  CAS  Google Scholar 

  5. Nolph KD, Miller F, Rubin J, Popovich RP: New directions in peritoneal dialysis concepts and applications. Kidney Int 18 (Suppl 10): S111, 1980

    Google Scholar 

  6. Nolph KD, Ghods AJ, Brown P, Van Stone J, Miller FN, Wiegman DL, Harris PD: Factors affecting peritoneal dialysis efficiency. Dial Transplant 6: 52, 1977

    Google Scholar 

  7. Karnovsky MJ: The ultrastructural basis of capillary permeability studied with peroxides as a tracer. J Cell Biol 3: 213, 1967

    Article  Google Scholar 

  8. Cotran RS: The fine structure of the microvasculature in relation to normal and altered permeability. In: Physical Bases of Circulatory Transport: Regulation and Exchange, edited by Reeve EB, Guyton AC, Philadelphia, PA, WB Saunders Co, 1967

    Google Scholar 

  9. Rasio EA: Metabolic control of permeability in isolated mesentery. Am J Physiol 276: 962, 1974

    Google Scholar 

  10. Miller F: The peritoneal microcirculation. In: Peritoneal Dialysis, edited by Nolph KD, The Hague, Boston, London, Martinus Nijhoff, 1981

    Google Scholar 

  11. Gotloib L, Shostak A, Bar-Sella P, Eiali V: Fenestrated capillaries in human parietal and rabbit diaphragmatic peritoneum, Nephron 41: 200, 1985

    Article  PubMed  CAS  Google Scholar 

  12. Gotloib L, Bar-Sella P, Shostak A: Reduplicated basal lamina of small venules and mesothelium of human parietal peritoneum: ultrastructural changes of reduplicated peritoneal basement membrane. Peritoneal Dial Bull 5: 212, 1985

    Google Scholar 

  13. Tsilibary EC, Wissig SL: Absorption from the peritoneal cavity: SEM study of the mesothelium covering the peritoneal surface of the muscular portion of the diaphragm. Am J Anat 149: 127, 1977

    Article  PubMed  CAS  Google Scholar 

  14. Cascarano J, Rubin AD, Chick WL, Sweifach BW: Metabolically induced permeability changes across mesothelium and endothelium. Am J Physiol 206: 373, 1964

    PubMed  CAS  Google Scholar 

  15. Gotloib L, Digenis GE, Rabinovich S, Medline A, Oreopoulos DG: Ultrastructure of normal rabbit mesentery. Nephron 34: 248, 1983

    Article  PubMed  CAS  Google Scholar 

  16. Digenis GE, Rabinovich S, Medline A, Rodella H, WvG, Oreopoulos DG: Electron microscopic study of the peritoneal kinetics of iron dextran during peritoneal dialysis in the rabbit. Nephron 37: 108, 1984

    Article  PubMed  CAS  Google Scholar 

  17. Verger C, Luger A, Moore H, Nolph K: Acute changes in peritoneal morphology and transport properties with infectious peritonitis and mechanical injury. Kidney Int 23: 823, 1983

    Article  PubMed  CAS  Google Scholar 

  18. Rubin J, McFarland S, Hellems EW, Bower JP: Peritoneal dialysis during peritonitis. Kidney Int 19: 460, 1981

    Article  PubMed  CAS  Google Scholar 

  19. Baradi AF, Rao SN: A scanning electron microscope study of mouse peritoneal mesothelium. Tissue Cell 8: 159, 1976

    Article  PubMed  CAS  Google Scholar 

  20. Andrews PM, Porter KR: The ultrastructure morphology and possible functional significance of mesothelial microvilli. Anat Res 117: 409, 1973

    Article  Google Scholar 

  21. Baradi AF, Rayns DJ: Mesothelial intercellular junctions and pathways. Cell Tissue Res 173: 133, 1976

    Article  PubMed  CAS  Google Scholar 

  22. Nolph KD: Peritoneal dialysis. In: The Kidney edited by Brenner BM, Rector FC Jr, 3rd ed Philadelphia, PA, WB Saunders Co, 1986, p 1847

    Google Scholar 

  23. Nolph KD, Rosenfeld PS, Powell JT, Danforth E Jr: Peritoneal glucose transport in hyperglycemia during peritoneal dialysis. Am J Med Sci 259: 272, 1970

    Article  PubMed  CAS  Google Scholar 

  24. Maher JF: Principles of dialysis and dialysis of drugs. Am J Med 62: 475, 1977

    Article  PubMed  CAS  Google Scholar 

  25. Bomar JB, Decker JS, Dechard JF, Hlavinka DJ, Moncrief JW, Popovich RP: The elucidation of maximum efficiency minimum cost peritoneal dialysis protocols. Trans Am Soc Artif Intern Organs 20: 120, 1974

    Google Scholar 

  26. Henderson LW, Nolph KD: Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 48: 992, 1969

    Article  PubMed  CAS  Google Scholar 

  27. Babb AL, Johansen PF, Strand MJ, Tenckhoff H, Scribner BH: Bidirectional permeability of the human peritoneum to middle molecules. Proc Eur Dial Transplant Assoc 10: 247, 1973

    PubMed  CAS  Google Scholar 

  28. Boen ST: Peritoneal Dialysis in Clinical Medicine, Springfield, JL, Charles C Thomas, 1964

    Google Scholar 

  29. Boen ST: Kinetics of peritoneal dialysis, comparison with artificial kidney. Medicine 40: 243, 1961

    Article  Google Scholar 

  30. Penzotti SC, Mattocks AM: Effects of dwell time, volume of dialysis fluid, and added accelerators on peritoneal dialysis of urea. J Pharm Sci 60: 1520, 1971

    Article  PubMed  CAS  Google Scholar 

  31. Tenckhoff H, Ward G, Boen ST: The influence of dialysate volume and flow rate on peritoneal clearance. Proc Eur Dial Transplant Assoc 2: 113, 1965

    Google Scholar 

  32. Lange K, Treser G: Automatic continuous high flow peritoneal dialysis, Trans Am Soc Artif Intern Organs 13: 164, 1967

    Google Scholar 

  33. Lange K, Treser H, Managalap J: Automatic continuous high flow rate peritoneal dialysis. Arch Klin Med 214: 201, 1968

    PubMed  CAS  Google Scholar 

  34. Stephen RL, Atkin-Thor E, Kolff WJ: Recirculating peritoneal dialysis with subcutaneous catheter. Trans Am Soc Artif Intern Organs 22: 575, 1976

    PubMed  CAS  Google Scholar 

  35. Lewin AK, Greenbaum MA, Gordon A, Maxwell MH: Sorbent based regenerating delivery system for use in peritoneal dialysis. Trans Am Soc Artif Intern Organs 20: 130, 1974

    Google Scholar 

  36. Shinaberger JH, Shear L, Barry KG: Increasing efficiency of peritoneal dialysis-experience with peritoneal extracorporeal recirculation dialysis. Trans Am Soc Artif Intern Organs 11: 76, 1965

    PubMed  CAS  Google Scholar 

  37. Kablitz C, Stephen RL, Duffy DP: Technological augmentation of peritoneal urea clearance: past, present and future. Dial Transplant 9: 741, 1980

    Google Scholar 

  38. Twardowski ZJ, Prowant BF, Nolph KD, Martinez AJ, Lamton LM: High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int 23: 64, 1983

    Article  PubMed  CAS  Google Scholar 

  39. Twardowski ZJ, Nolph KD, Prowant B, Moore HL: Efficiency of high volume, low frequency CAPD. Trans Am Soc Artif Intern Organs 29: 53, 1983

    PubMed  CAS  Google Scholar 

  40. Finkelstein FO, Kliger AS: Enhanced efficiency of peritoneal dialysis using rapid, small-volume exchanges, asaio J 2: 103, 1979

    Google Scholar 

  41. Warden GD, Maxwell JG, Stephen RL: The use of reciprocating peritoneal dialysis with a subcutaneous peritoneal catheter in end-stage renal failure in diabetes mellitus. J Surg Res 24: 495, 1978

    Article  PubMed  CAS  Google Scholar 

  42. Blumenkrantz MJ, Gordon A, Roberts M: Applications of the Redy sorbent system to hemodialysis and peritoneal dialysis. Artif Organs 3: 230, 1979

    Article  PubMed  CAS  Google Scholar 

  43. Gross M, McDonald HP Jr: Effects of dialysate temperature and flow rate on peritoneal clearance. JAMA 202: 215, 1967

    Article  Google Scholar 

  44. De Santo NG, Capodicasa G, Capasso G, Giordano C: Development of means to augment peritoneal urea clearances: The synergistic effects of combining high dialysate temperature and high dialysate flow rates with dextrose and nitroprusside. Artif Organs 5: 409, 1981

    Article  PubMed  Google Scholar 

  45. Indraprasit S, Namwongprom A, Sooksriwongse CO, Buri PS: Effect of dialysate temperature on peritoneal clearances. Nephron 34: 45, 1983

    Article  PubMed  CAS  Google Scholar 

  46. Mader JT, Reinarz JA: Peritonitis during peritoneal dialysis — the role of the preheating water bath. J Chronic Dis 31: 635, 1978

    Article  PubMed  CAS  Google Scholar 

  47. Knöchel JP, Mason AD: Effect of alkalinization on peritoneal diffusion of uric acid. Am J Physiol 210: 1160, 1966

    PubMed  Google Scholar 

  48. Deger GE, Wagoner RD: Peritoneal dialysis in acute uric acid nephropathy. Mayo Clin Proc 47: 189, 1972

    PubMed  CAS  Google Scholar 

  49. Campion DS, North JP: Effect of protein binding of barbiturates on their rate of removal during peritoneal dialysis. J Lab Clin Med 66: 549, 1965

    PubMed  CAS  Google Scholar 

  50. Mäher JF, Bennett RR, Hirszel P, Chakrabarti E: The mechanism of dextrose-enhanced peritoneal mass transport rates. Kidney Int 28: 16, 1985

    Article  PubMed  Google Scholar 

  51. Rubin J, Nolph KD, Popovich RP, Moncrief J, Prowant B: Drainage volumes during CAPD. Asaio J 2: 2, 1979

    Google Scholar 

  52. Popovich RP, Moncrief JW, Nolph KD, Ghods AJ, Twardowski ZJ, Pyle WK: Continuous ambulatory peritoneal dialysis. Ann Intern Med 88: 449, 1978

    PubMed  CAS  Google Scholar 

  53. Erbe RW, Greene JA Jr, Weller JM: Peritoneal dialysis during hemorrhagic shock. J Appl Physiol 22: 131, 1967

    PubMed  CAS  Google Scholar 

  54. Hare HG, Valtin H, Gosselin RE: Effects of drugs on peritoneal dialysis in the dog. J Pharmacol Exp Ther 145: 122, 1964

    PubMed  CAS  Google Scholar 

  55. Henderson LW, Kintzel JE: Influence of antidiuretic hormone on peritoneal membrane area and permeability. J Clin Invest 50: 2437, 1971

    Article  PubMed  CAS  Google Scholar 

  56. Chan MK, Varghese Z, Baillod RA, Moorhead JF: Peritoneal dialysis effect of intraperitoneal dopamine. Dial Transplant 9: 382, 1980

    Google Scholar 

  57. Gutman RA, Nixon WP, McRae RL, Spencer HW: Effect of intraperitoneal and intravenous vasoactive amines on peritoneal dialysis: study in anephric dogs. Trans Am Soc Artif Intern Organs 22: 570, 1976

    PubMed  CAS  Google Scholar 

  58. Miller FN, Nolph KD, Harris PD, Rubin J, Wiegman DL, Joshua IG: Effects of peritoneal dialysis solutions on human clearances and rat arterioles. Trans Am Soc Artif Intern Organs 24: 131, 1978

    PubMed  CAS  Google Scholar 

  59. Miller FN, Nolph KD, Harris PD, Rubin J, Wiegman DL, Joshua IG, Twardowski ZJ, Ghods AJ: Microvascular and clinical effects of altered peritoneal dialysis solutions. Kidney Int 15: 630, 1979

    Article  PubMed  CAS  Google Scholar 

  60. Nolph KD, Ghods AJ, Van Stone J, Brown PA: The effects of intraperitoneal vasodilators on peritoneal clearances. Trans Am Soc Artif Intern Organs 22: 586, 1976

    PubMed  CAS  Google Scholar 

  61. Nolph KD, Ghods AJ, Brown PA, Miller FN, Harris P, Pyle K, Popovich R: Effects of nitroprusside on peritoneal mass transfer coefficients and microvascular physiology. Trans Am Soc Artif Intern Organs 23: 210, 1977

    PubMed  CAS  Google Scholar 

  62. Nolph KD, Ghods AJ, Brown PA, Twardowski ZJ: Effects of intraperitoneal nitroprusside on peritoneal clearances with variations in dose, frequency of administration, and dwell times. Nephron 24: 114, 1979

    Article  PubMed  CAS  Google Scholar 

  63. Nolph KD: Effects of intraperitoneal vasodilators on peritoneal clearances. Dial Transplant 1: 812, 1978

    Google Scholar 

  64. Hirszel P, Lasrich M, Maher JF: Augmentation of peritoneal mass transport by dopamine. J Lab Clin Med 94: 747, 1979

    PubMed  CAS  Google Scholar 

  65. Gutman RA: Toward enhancement of peritoneal clearances. Dial Transplant 8: 1072, 1979

    Google Scholar 

  66. Maher JF: Acceleration of peritoneal mass transport by drugs and hormones. Artif Organs 3: 224, 1979

    Article  PubMed  CAS  Google Scholar 

  67. Felt J, Richard E, McCaffrey C, Levy M: Peritoneal clearance of creatinine and inulin during dialysis in dogs: Effect of splanchnic vasodilators. Kidney Int 16: 459, 1979

    Article  PubMed  CAS  Google Scholar 

  68. Maher JF, Hirszel P, Lasrich M: Modulation of peritoneal transport rates by prostaglandins. Adv Prostaglandin Thromboxane Res 1: 695, 1980

    Google Scholar 

  69. Renkin EM: Exchange of substances through capillary walls: Circulatory and respiratory mass transport. In: Ciba Foundation Symposium, edited by Wolstenholme GEW, Boston, Little Brown, 1969, p 50

    Google Scholar 

  70. Wayland H: Transmural and interstitial molecular transport. Action of histamine. In: Continuous Ambulatory Peritoneal Dialysis, edited by Legrain M, Amsterdam, Excerpta Medica, 1980,p 20

    Google Scholar 

  71. Miller FN, Joshua IG, Harris PD, Wiegman DL, Jauchem JR: Peritoneal dialysis solutions and the microcirculation. Contrib Nephrol 17: 51, 1979

    PubMed  CAS  Google Scholar 

  72. Flessner MF, Dedrick RL, Schultz JS: Exchange of macromolecules between peritoneal cavity and plasma. Am J Physiol 248: H15, 1985

    PubMed  CAS  Google Scholar 

  73. Nolph KD, Stoltz M, Maher JF: Altered peritoneal permeability in patients with systemic vasculitis. Ann Intern Med 75: 513, 1971

    Google Scholar 

  74. Brown ST, Ahearn DJ, Nolph KD: Reduced peritoneal clearances in scleroderma increased by intraperitoneal isoproterenol. Ann Intern Med 78: 891, 1973

    PubMed  CAS  Google Scholar 

  75. Zimmerman AL, Sablay LB, Aynedjian HS, Bank N: Increased peritoneal permeability in rats with alloxan-induced diabetes mellitus. J Lab Clin Med 103: 720, 1984

    PubMed  CAS  Google Scholar 

  76. Manery JF: Water and electrolyte metabolism. Physiol Rev 34: 334, 1954

    PubMed  CAS  Google Scholar 

  77. Tarail R, Hacker ES, Taylor R: The ultrafilterability of potassium and sodium in human serum. J Clin Invest 31: 23, 1952

    Article  PubMed  CAS  Google Scholar 

  78. Folk BP, Zierler KL, Lilienthal JL: Distribution of potassium and sodium between serum and certain extracellular fluids in man. Am J Physiol 153: 381, 1948

    PubMed  CAS  Google Scholar 

  79. Brown ST, Ahearn DJ, Nolph KD: Potassium removal with peritoneal dialysis. Kidney Int 4: 67, 1973

    Article  PubMed  CAS  Google Scholar 

  80. Kelton JG, Vlan R, Stiller C, Holmes E: Comparison of chemical composition of peritoneal fluid and serum. Ann Intern Med 89: 67, 1978

    PubMed  CAS  Google Scholar 

  81. Henderson LW: Peritoneal ultrafiltration dialysis: Enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest 45: 950, 1966

    Article  PubMed  CAS  Google Scholar 

  82. Ahearn DJ, Nolph KD: Controlled sodium removal with peritoneal dialysis. Trans Am Soc Artif Intern Organs 18: 423, 1972

    PubMed  CAS  Google Scholar 

  83. Nolph KD, Hano JE, Teschan PE: Peritoneal sodium transport during hypertonic peritoneal dialysis: Physiologic mechanisms and clinical implications. Ann Intern Med 70: 931, 1969

    PubMed  CAS  Google Scholar 

  84. Nolph KD, Sorkin MI, Moore H: Autoregulation of sodium and potassium removal during continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Intern Organs 26: 334, 1980

    PubMed  CAS  Google Scholar 

  85. Maher JF, Chakrabarti E: Ultrafiltration by hyperosmotic peritoneal dialysis fluid excludes intracellular solutes. Am J Nephrol 4: 169, 1984

    Article  PubMed  CAS  Google Scholar 

  86. Nolph KD: CAPD — A logical approach to peritoneal dialysis limitations (A comparison of the peritoneal dialysis system and hollow fiber kidneys). Int J Nephrol Urol Androl 1: 5, 1980

    Google Scholar 

  87. Wayland H, Silberberg A: Blood to lymph transport. Microvasc Res 15: 367, 1978

    Article  PubMed  CAS  Google Scholar 

  88. Nolph KD, Prowant B: Complications during continuous ambulatory peritoneal dialysis. In: Continuous Ambulatory Peritoneal Dialysis, edited by Legrain M, Amsterdam, Excerpta Medica, 1980, p 258

    Google Scholar 

  89. Rubin J, Rogers WA, Taylor HM, Everett ED, Prowant BP, Fruto LV, Nolph KD: Peritonitis during continuous ambulatory peritoneal dialysis. Ann Intern Med 92: 7, 1980

    PubMed  CAS  Google Scholar 

  90. Wade OL, Combes B, Childs AW, Wheeler HO, Dournand D, Bradley SE: The effect of exercise on the splanchnic blood flow and splanchnic blood volume in normal man. Clin Sci 15: 457, 1956

    PubMed  Google Scholar 

  91. Miller FN, Nolph KD, Johsua IG: The osmolality component of peritoneal dialysis solutions. In: Continuous Ambulatory Peritoneal Dialysis, edited by Legrain M, Amsterdam, Excerpta Medica, 1980, p 12

    Google Scholar 

  92. Nolph KD: Introductory remarks: Anatomy, physiology and kinetics of peritoneal transport during peritoneal diaglysis. In: Continuous Ambulatory Peritoneal Dialysis, edited by Legrain M, Amsterdam, Excerpta Medica, 1980, p 7

    Google Scholar 

  93. Goldschmidt ZH, Pote HH, Katz MA, Shear L: Effect of dialysate volume on peritoneal dialysis kinetics. Kidney Int 5: 240, 1975

    Article  Google Scholar 

  94. Miller FN, Wiegman DL, Joshua IG, Nolph KD, Rubin J: Effects of vasodilators and peritoneal dialysis solution on the microcirculation of the rat cecum. Proc Soc Exp Biol Med 161: 605, 1979

    PubMed  CAS  Google Scholar 

  95. Aune S: Transperitoneal exchange. II. Peritoneal blood flow estimated by hydrogen gas clearance. Scand J Gastroenterol 5: 99, 1970

    PubMed  CAS  Google Scholar 

  96. Karnovsky JF: The ultrastructural basis of transcapillary exchanges. In: Biological Interfaces: Flows and Exchanges, Boston, Little Brown, 1968, p 64

    Google Scholar 

  97. Nolph KD: Peritoneal dialysis. In: Replacement of Renal Function by Dialysis, edited by Drukker W, Parsons FM, Maher JF, The Hague, Boston, London, Martinus Nijhoff, First edition, 1978, p 277

    Google Scholar 

  98. Blumenkrantz MJ, Roberts CE, Card B: Nutritional management of the adult patient undergoing peritoneal dialysis. J Am Diet Assoc 73: 351, 1978

    Google Scholar 

  99. Giordano C, De Santo NG: Dietary management of patients on peritoneal dialysis. Contrib Nephrol 17: 77, 1979

    PubMed  CAS  Google Scholar 

  100. Kobayashi K, Manji T, Hiramatsu S: Nitrogen metabolism in patients on peritoneal dialysis. Contrib Nephrol 17: 93, 1979

    PubMed  CAS  Google Scholar 

  101. Miller FN, Hammerschmidt DE, Anderson GI, Moore JN: Protein loss induced by complement activation during peritoneal dialysis. Kidney Int 25: 480, 1984

    Article  PubMed  CAS  Google Scholar 

  102. Steinhauer HB, Schollmeyer P: Prostaglandin-mediated loss of proteins during peritonitis in continuous ambulatory peritoneal dialysis. Kidney Int 29: 584, 1986

    Article  PubMed  CAS  Google Scholar 

  103. Nagel W, Kuschinsky W: Study of the permeability of isolated dog mesentery. Eur J Clin Invest 1: 149, 1970

    Article  PubMed  CAS  Google Scholar 

  104. Gosselin RE, Berndt WO: Diffusional transport of solutes through mesentery and peritoneum. J Theor Biol 3: 487, 1962

    Article  CAS  Google Scholar 

  105. Rubin J, Kirchner K, Bower J: Evaluation of stagnant fluid films during simulated peritoneal dialysis: In vitro and in vivo studies. Clin Exper Dial Apheresis 5: 285, 1981

    CAS  Google Scholar 

  106. Maher JF, Nolph KD: Factors affecting optimal performance of coil dialyzers. Proc 6th Int Congr Nephrol, edited by Giovannetti S, Bonomini V, D’Amico G, Basel, S Karger 6: 657, 1976

    Google Scholar 

  107. Maher JF, Nolph KD: Resistance to diffusion in dialyzers. Clin Nephrol 1: 333, 1974

    Google Scholar 

  108. Rubin J, Nolph KD, Arfania D, Miller FM, Wiegman DL, Joshua IG, Harris PD: Studies on non-vasoactive peritoneal dialysis solutions. J Lab Clin Med 93: 910, 1979

    PubMed  CAS  Google Scholar 

  109. McGary TJ, Nolph KD, Rubin J: In vitro simulations of peritoneal dialysis: A technique for demonstrating limitations on solute clearances due to stagnant fluid films and poor mixing. J Lab Clin Med 96: 148, 1980

    PubMed  CAS  Google Scholar 

  110. Maher JF, Hohndel DG, Shea C, Di Sanzo F, Cassetta M: Effects of intraperitoneal diuretics on solute transport during hypertonic dialysis. Clin Nephrol 7: 96, 1977

    PubMed  CAS  Google Scholar 

  111. Rubin J, Klein F, Bower JD: Investigation of the net sieving coefficient of the peritoneal membrane during peritoneal dialysis. asaio J 5: 9, 1982

    Google Scholar 

  112. Nolph KD, Twardowski ZJ, Popovich RP, Rubin J: Equilibration of peritoneal dialysis solutions during long dwell exchanges. J Lab Clin Med 246: 256, 1979

    Google Scholar 

  113. Boyer J, Gill GN, Epstein FH: Hyperglycemia and hyperosmolality complicating peritoneal dialysis. Ann Intern Med 67: 568, 1967

    PubMed  CAS  Google Scholar 

  114. Smith RJ, Block MR, Arieff AI, Blumenkrantz MJ, Coburn JW: Hypernatremic, hyperosmolar coma complicating chronic peritoneal dialysis. Proc Clin Dial Transplant Forum 4: 96, 1974

    PubMed  Google Scholar 

  115. Nolph KD, New DL: Effects of ultrafiltration on solute clearances in hollow fiber artificial kidneys. J Lab Clin Med 88: 593, 1976

    PubMed  CAS  Google Scholar 

  116. Nolph KD, Stoltz ML, Maher JF: Electrolyte transport during ultrafiltration of protein solutions. Nephron 9: 473, 1971

    Article  Google Scholar 

  117. Glassock RJ: The nephrotic syndrome. Hosp Pract 14: 105, 1979

    PubMed  CAS  Google Scholar 

  118. Nolph KD, Hopkins CA, New D, Antwiler GD, Popovich RP: Differences in solute sieving with osmotic vs. hydrostatic ultrafiltration. Trans Am Soc Artif Intern Organs 22: 618, 1976

    PubMed  CAS  Google Scholar 

  119. Twardowski ZJ, Nolph KD, Popovich RP, Hopkins CA: Comparison of polymer, glucose, and hydrostatic pressure induced ultrafiltration in a hollow fiber dialyzer: Effects on convective solute transport. J Lab Clin Med 92: 619, 1978

    PubMed  CAS  Google Scholar 

  120. Nolph KD, Miller FN, Pyle K, Popovich RP, Sorkin MI: A hypothesis to explain the characteristics of peritoneal ultrafiltration. Kidney Int 20: 543, 1981

    Article  PubMed  CAS  Google Scholar 

  121. Khanna R, Mactier R, Twardowski Z, Nolph K: Peritoneal cavity lymphatics. Peritoneal Dial Bull 6: 113, 1986

    Google Scholar 

  122. Yoffey JM, Courtice FC: The peritoneal and pleural cavities. In: Lymphatics, Lymph and the Lymphomyeloid Complex, edited by Yoffey JM, Courtice FC, London, Academic Press, 1970,p 295

    Google Scholar 

  123. French JE, Florey HW, Morris B: The absorption of particles by the lymphatics of the diaphragm. Q J Exp Physiol 45: 88, 1960

    CAS  Google Scholar 

  124. Tsilibary EC, Wissig SL: Structural plasticity in the pathway for lymphatic drainage from the peritoneal cavity. Microvasc Res 17: S144, 1979

    Google Scholar 

  125. Bettendorf U: Lymph flow mechanism of the subperitoneal diaphragmatic lymphatics. Lymphology 11: 111, 1978

    PubMed  CAS  Google Scholar 

  126. Leak LV: Permeability of peritoneal mesothelium: A TEM and SEM study. J Cell Biol 70: 423, 1976

    Google Scholar 

  127. Tsilbary EC, Wissig SL: Cytochalasin D modifies the cell surface and actin distribution of cells in vivo. J Cell Biol 83: 328, 1979

    Google Scholar 

  128. Tsilibary EC, Wissig SL: Lymphatic absorption from the peritoneal cavity: Regulation of patency of mesothelial stomata. Microvasc Res 25: 22, 1983

    Article  PubMed  CAS  Google Scholar 

  129. Casley-Smith JR: Endothelial permeability. The passage of particles into and out of diaphragmatic lymphatics. Q J Exp Physiol 49: 365, 1964

    CAS  Google Scholar 

  130. Allen L: On the penetrability of the lymphatics of the diaphragm. Anat Ree 124: 639, 1956

    Article  CAS  Google Scholar 

  131. Allen L, Vogt E: A mechanism of lymphatic absorption from serous cavities. Am J Physiol 119: 776, 1937

    CAS  Google Scholar 

  132. Flessner MF, Dedrick RL, Schultz JS: A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Physiol 246: R597, 1984

    PubMed  CAS  Google Scholar 

  133. Flessner MF, Dedrick RL, Schultz JS: Exchange of macromolecules between peritoneal cavity and plasma. Am J Physiol 248: H15, 1985

    PubMed  CAS  Google Scholar 

  134. Flessner MF, Fenstermacher JD, Blasberg RG, Dedrick RL: Peritoneal absorption of macromolecules studies by quantitative autoradiography. Am J Physiol 248: H26, 1985

    PubMed  CAS  Google Scholar 

  135. Shear L, Castellot JJ, Barry KG: Peritoneal fluid absorption. I. Effect of dehydration on kinetics. J Lab Clin Med 66: 232, 1965

    PubMed  CAS  Google Scholar 

  136. Courtice FC, Steinbeck AW: The lymphatic drainage of plasma from the peritoneal cavity of the cat. Austr J Exp Biol Med Sci 27: 161, 1950

    Article  Google Scholar 

  137. Lill SR, Parsons RH, Buhac I: Permeability of the diaphragm and fluid resorption from the peritoneal cavity in the rat. Gastroenterology 76: 997, 1979

    PubMed  CAS  Google Scholar 

  138. Anne S: Transperitoneal exchange IV. The effect of transperitoneal fluid transport on the transfer of solutes. Scand J Gastroenterol 5: 241, 1970

    Google Scholar 

  139. Nolph KD, Mactier RA, Khanna R, Twardowski Z, Moore H, McGary T: The kinetics of ultrafiltration during peritoneal dialysis: The role of lymphatics. Kidney Int 32: 219, 1987

    Article  PubMed  CAS  Google Scholar 

  140. Mactier RA, Khanna R, Twardowski Z, Nolph KD: Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in continuous ambulatory peritoneal dialysis. J Clin Invest 80: 1311, 1987

    Article  PubMed  CAS  Google Scholar 

  141. Rippe BG, Stelin, and Ahlem J: Lymph flow from the peritoneal cavity in CAPD patients. In: Frontiers in Peritoneal Dialysis, edited by Maher JF, Winchester JF, New York, Field, Rich and Assoc, 1986, p 24

    Google Scholar 

  142. Nolph KD, Whitcomb ME, Schrier RW: Mechanisms for inefficient peritoneal dialysis in acute renal failure associated with heat stress and exercise. Ann Intern Med 71: 317, 1969

    PubMed  CAS  Google Scholar 

  143. Rubin J, Nolph K, Arfania D, Brown P, Moore H, Rust P: Influence of patient characteristics on peritoneal clearances. Nephron 27: 118, 1981

    Article  PubMed  CAS  Google Scholar 

  144. Maher JF, Hirszel P, Hohnadel DC, Abraham J, Lasrich M: Fatty acid removal during peritoneal dialysis: mechanisms, rates and significance. Asaio J 1: 8, 1978

    Google Scholar 

  145. Pappenheimer JR: Passage of molecules through capillary walls. Physiol Rev 33: 387, 1953

    PubMed  CAS  Google Scholar 

  146. Nolph KD, Ahearn DJ, Esterly JA, Maher JF: Irreversible morphological and functional changes in hollow fiber kidneys with a single dialysis. Trans Am Soc Artif Intern Organs 20: 604, 1974

    PubMed  Google Scholar 

  147. Nolph KD: Peritoneal clearances. J Lab Clin Med 94: 519, 1979

    PubMed  CAS  Google Scholar 

  148. Nolph KD, Popovich RP, Moncrief JW: Theoretical and practical implications of continuous ambulatory peritoneal dialysis. Nephron 21: 117, 1978

    Article  PubMed  CAS  Google Scholar 

  149. Popovich RP, Moncrief JW: Kinetic modeling of peritonal transport. Contrib Nephrol 17: 59, 1979

    PubMed  CAS  Google Scholar 

  150. Popovich RP, Pyle WK, Moncrief JW: Peritoneal dialysis. Am Inst Chem Eng Symp Series 75: 31, 1979

    CAS  Google Scholar 

  151. Popovich RP, Pyle WK, Hiatt MP, McCollough WS, Moncrief JW: Metabolite transport kinetics in peritoneal dialysis. In: Continuous Ambulatory Peritoneal Dialysis, edited by Legrain M, Amsterdam, Excerpta Medica, 1980, p 28

    Google Scholar 

  152. Green DM, Antwiler GD, Moncrief JW, Decherd JF, Popovich RP: Measurement of the transmittance coefficient spectrum of cuprophan. Trans Am Soc Artif Intern Organs 22: 627, 1976

    PubMed  CAS  Google Scholar 

  153. Maher JF, Hirszel P: Pharmacologic manipulation of peritoneal transport. In: Peritoneal Dialysis, edited by Nolph KD. The Hague, Boston, London, Martinus Nijhoff, 1985, p 267

    Google Scholar 

  154. Hirszel P, Maher JF, LeGrow W: Increased peritoneal mass transport with glucagon acting at the vascular surface. Trans Am Soc Artif Intern Organs 24: 136, 1979

    Google Scholar 

  155. Mattocks AM, Penzotti SC: Acceleration of peritoneal dialysis with minimum amounts of dioctyl sodium sulfosuccinate. J Pharm Sci 61: 475, 1972.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nolph, K.D. (1989). Peritoneal Anatomy and Transport Physiology. In: Maher, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1087-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1087-4_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6979-3

  • Online ISBN: 978-94-009-1087-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics