Skip to main content

The application of molecular biology to the development of new vaccines against poliomyelitis

  • Chapter
Recent Developments in Prophylactic Immunization

Part of the book series: Immunology and Medicine ((IMME,volume 12))

  • 42 Accesses

Abstract

Over the past decade the poHovirus has become one of the best understood of all viruses which affects humans. The application of increasingly sophisticated molecular biological and immunological techniques to the study of this virus has provided detailed insights into its molecular and genetic structure, its mode of replication and the molecular basis of its pathogenicity (for reviews see refs 1–3). Poliomyelitis, the disease caused by the poliovirus, has been successfully controlled in many countries of the world through the use of two very good vaccines, the inactivated ‘Salk’ vaccine and the live attenuated ‘Sabin’ vaccine. Although both of these vaccines have considerable merits, they also have some relative disadvantages when compared with each other and with other viral vaccines. For example, the killed vaccine is more expensive than the live attenuated, and has seldom found widespread use in developing countries. Its use has also been occasionally linked to problems; for example an outbreak of poliomyelitis in Finland in 1984 suggested that the immunogenicity of at least the type 3 component of the killed vaccine may have been inadequately antigenic4. It has also been suggested that the immune response to the killed vaccine may not provide herd immunity due to the lack of induction of secretory antibodies5. For these reasons, and because of its advantages of lower cost and ease of administration, most countries prefer the live attenuated ‘Sabin’ vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almond, J. W. (1987). The attenuation of poliovirus neurovirulence. Ann. Rev. Microbiol., 41, 153–80

    Article  CAS  Google Scholar 

  2. Nomoto, A. and Wimmer, E. (1986). Genetic studies of the antigenicity and the attenuation phenotype of poliovirus. In Russell, W. C. and Almond, J. W. (eds), Molecular Basis of Virus Disease, Vol. 40, pp. 107–34. SGM Symposium

    Google Scholar 

  3. Kuhn, R. J. and Wimmer, E. (1987). The replication of picornaviruses. In Rowlands, D. J., Mahy, B. W. J. and Mayo, M. (eds), The Molecular Biology of Positive Strand RNA Viruses, pp. 17–51. (New York: Academic Press)

    Google Scholar 

  4. Hovi, T., Huovilainen, A., Kuronent, T., Poyry, T., Salama, N., Cantell, K., Kinnunen, E., Lapinleimu, K., Roivainen, M. and Stenvik, M. (1986). Outbreak of paralytic poliomyelitis in Finland: widespread circulation of antigenically altered poliovirus type 3 in a vaccinated population. Lancet, 1, 1427–42

    Article  PubMed  CAS  Google Scholar 

  5. Melnick, J. L. (1978). Advantages and disadvantages of killed and live poliomyelitis vaccines. Bull. WHO, 56, 21–38

    PubMed  CAS  Google Scholar 

  6. Montefiore, D. Q., Jamieson, M. F., Collard, P. and Jolly, H. (1963). Trial of type 1 oral poliomyelitis vaccine (Sabin) in Nigerian children. Br. Med. J., 1, 1569–72

    Article  Google Scholar 

  7. Assaad, F. and Cockburn, W. C. (1982). The relationship between acute persisting spinal paralysis and poliomyelitis vaccine — results of a ten-year enquiry. Bull. WHO, 60, 231–42

    Google Scholar 

  8. Almond, J. W., Stanway, G., Cann, A. J., Westrop, G. D., Evans, D. M. A., Ferguson, M., Minor, P. D., Spitz, M. and Schild, G. C. (1984). New poliovirus vaccines: a molecular approach. Vaccine, 2, 177–84

    Article  PubMed  CAS  Google Scholar 

  9. Pelletier, J. and Sonnenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334, 320–5

    Article  PubMed  CAS  Google Scholar 

  10. Lubinski, J. M., Kaplan, G., Racaniello, V. R. and Dasgupta, A. (1986). Mechanism of in vitro synthesis of covalently linked dimeric RNA molecules by the poliovirus replicase. J. Virol., 58, 459–67

    PubMed  CAS  Google Scholar 

  11. Kitamura, N., Semler, B., Rothberg, P. G., Larsen, G. R., Adler, C. J., Dorner, A. J., Emini, E. A., Hanecak, R., Lee, J. J., van der Werf, S., Anderson, C. W. and Wimmer, E. (1981). Primary structure, gene organisation and polypeptide expression of poliovirus RNA. Nature, 291, 547–53

    Article  PubMed  CAS  Google Scholar 

  12. Hogle, J. M., Chow, M. and Filman, D. J. (1985). The three-dimensional structure of poliovirus at 2.9Å resolution. Science, 229, 1358–65

    Article  PubMed  CAS  Google Scholar 

  13. Filman, D. J., Syred, R., Chow, M., Minor, P. D., Neadham, A. J. and Hogle, J. M. (1989). Structural factors that control conformational transitions of serotype specificity in type 3 poliovirus. EMBO J. (Submitted)

    Google Scholar 

  14. Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H-J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B. and Vriend, G. (1985). Structure of a human cold virus and functional relationship to other picornaviruses. Nature, 317, 145–53

    Article  PubMed  CAS  Google Scholar 

  15. Toyoda, H., Kohara, M., Kataoka, Y., Siganuma, T., Omata, T., Ionura, N. and Nomoto, A. (1984). Complete nucleotide sequences of all three poliovirus serotype genomes. Implications for genetic relationship, gene function and antigenic determinants. J. Mol Biol., 174, 561–85

    Article  PubMed  CAS  Google Scholar 

  16. Emini, E. A., Jameson, B. A. and Wimmer, E. (1983). Priming for and induction of anti-poliovirus neutralizing antibodies by synthetic peptides. Nature, 304, 699–703

    Article  PubMed  CAS  Google Scholar 

  17. Van der Werf, S., Wynchowski, G., Bruneau, P., Blondel, B., Crainic, R., Horodniceanu, F. and Girard, M. (1983). Localization of a poliovirus type 1 neutralization epitope in viral capsid polypeptide VP1. Proc. Natl. Acad. Sci. USA, 80, 5080–4

    Article  PubMed  Google Scholar 

  18. Minor, P. D., Ferguson, M., Evans, D. M. A., Almond, J. W. and Icenogle, J. P. (1986). Antigenic structure of polioviruses of serotypes 1, 2 and 3. J. Gen. Virol., 67, 1283–91

    Article  PubMed  CAS  Google Scholar 

  19. Icenogle, J. P., Minor, P. D., Ferguson, M. and Hogle, J. M. (1986). Modulation of humoral response to a 12-amino-acid site on the poliovirus virion. J. Virol., 60, 297–301

    PubMed  CAS  Google Scholar 

  20. Sabin, A. B. and Boulger, L. R. (1973). History of Sabin attenuated poliovirus oral live vaccine strains. J. Biol Stand., 1, 115–18

    Article  Google Scholar 

  21. Cann, A. J., Stanway, G., Hughes, P. J., Minor, P. D., Evans, D. M. A., Schild, G. G and Almond, J. W. (1984). Reversion to neuro virulence of the live-attenuated Sabin type 3 oral poliovirus vaccine. Nucl Acids Res., 12, 7787–92

    Article  PubMed  CAS  Google Scholar 

  22. Westrop, G. D., Wareham, K. A., Evans, D. M. A., Dunn, G., Minor, P. D., Magrath, D. I., Taffs, F., Marsden, S., Skinner, M. A., Schild, G. G and Almond, J. W. (1989). Genetic basis of attenuation of the Sabin type 3 oral polio vaccine. J. Virol. (In press)

    Google Scholar 

  23. Evans, D. M. A., Dunn, G., Minor, P. D., Schild, G. G., Cann, A. J., Stanway, G., Almond, J. W., Currey, K. and Maizel, J. V. Jr. (1985). Increased neuro virulence associated with a single nucelotide change in a non-coding region of the Sabin type 3 poliovaccine genome. Nature, 314, 548–50

    Article  PubMed  CAS  Google Scholar 

  24. Almond, J. W., Westrop, G. D., Cann, A. J., Stanway, G., Evans, D. M. A., Minor, P. D. and Schild, G. G (1985). Attenuation and reversion to neuro virulence of the Sabin poliovirus type 3 vaccine. In Lerner, R. A., Chanock, R. M. and Brown, F. (eds), Vaccines 85, pp. 271–83. (Cold Spring Harbor Laboratory)

    Google Scholar 

  25. La Monica, N., Almond, J. W. and Racaniello, V. R. (1987). A mouse model for poliovirus neuro virulence identifies mutations that attenuate the virus for man. J. Virol., 61, 2917–20

    PubMed  Google Scholar 

  26. Omata, T., Kohara, M., Kuge, S., Komatsu, T., Abe, S., Semler, B. L., Kameda, A., Itoh, H., Arita, M., Wimmer, E. and Nomoto, A. (1986). Genetic analysis of the attenuation phenotype of poliovirus type 1. J. Virol, 58, 348–58

    PubMed  CAS  Google Scholar 

  27. Nomoto, A., Omata, T., Toyoda, H., Kuge, S., Horie, H., Kataoka, Y., Genba, Y., Nakano, Y. and Imura, N. (1982). Complete nucleotide sequence of the attenuated poliovirus Sabin 1 strain genome. Proc. Natl Acad. Sci. USA, 79, 5793–7

    Article  PubMed  CAS  Google Scholar 

  28. Nomoto, A., Kohara, M., Kuge, S., Abe, S., Semler, B. L., Komatsu, T., Arita, M. and Itoh, H. (1988). The development of new poliovirus vaccines based on molecular cloning. In Kurstak, E., Marusyk, R. G., Murphy, F. A. and Van Regenmortel, M. H. V. (eds), Applied Virology Research, Vol. I: New Vaccines and Chemotherapy, pp. 43–62. (New York, London: Plenum)

    Google Scholar 

  29. Minor, P. D. and Dunn, G. (1988). The effect of sequences in the 5′ non-coding region on the replication of polioviruses in the human gut. J. Gen. Virol., 69, 1091–6

    Article  PubMed  CAS  Google Scholar 

  30. Skinner, M. A., Racaniello, V. R., Dunn, G., Cooper, J., Minor, P. D. and Almond, J. W. (1989). A new model for the secondary structure of the 5′ non-coding RNA of poliovirus is supported by biochemical and genetical data which also show that RNA secondary structure is important in neurovirulence. J. Mol Biol. (In press)

    Google Scholar 

  31. Burke, K. L., Dunn, G., Ferguson, M., Minor, P. D. and Almond, J. W. (1988). Antigen chimaeras of poliovirus as potential new vaccines. Nature, 332, 81–2

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Almond, J.W. (1989). The application of molecular biology to the development of new vaccines against poliomyelitis. In: Zuckerman, A.J. (eds) Recent Developments in Prophylactic Immunization. Immunology and Medicine, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1067-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1067-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6969-4

  • Online ISBN: 978-94-009-1067-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics