Skip to main content

Assimilation of Data into Ocean Models

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 284))

Abstract

Because of the size of the ocean we do not have, nor are we ever likely to have, good synoptic data on the ocean circulation. However, data from relatively isolated instruments within the ocean are usually available and these are now being joined by data from satellite mounted instruments which give routine surveillance of the ocean surface. The prime task facing us is to find methods for integrating this data to deduce the flow throughout the ocean.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, B.D.O. and J.B. Moore (1979): Objective Filtering. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Anderson, D.L.T. and A.M. Moore (1986): ‘Data Assimilation’. Pp.437–464 in: Advanced Physical Oceanographic Numerical Modelling. (Editor: J.J. O’Brien). Dordrecht, D. Reidel, 608pp.

    Google Scholar 

  • Baer, F. and J.J. Tribba (1977): On Complete Filtering of Gravity Wave Modes through Nonlinear Initialization. Monthly Weather Review, 105, 1536–1539.

    Article  Google Scholar 

  • Barbieri, R.W., and P.S. Schopf (1982): Oceanic applications of the Kalman filter. NASA/Goddard Technical Memo TM83993,26pp.

    Google Scholar 

  • Battin, R.H. (1962): ‘A Statistical Optimizing Navigation Procedure for Space Flight’. American Rocket Society Journal, 32, 1681–1696.

    Google Scholar 

  • Bengtsson, L. (1975): 4-Dimensional assimilation of Meteorological Observations. GARP Publication Series No. 15. World Meteorological Organisation and International Council of Scientific Unions, 75pp..

    Google Scholar 

  • Bengtsson, L., M. Ghil and E. Kallen (1981): Dynamic Meteorology: Data Assimilation Methods. Springer-Verlag, New York, 330pp.

    Book  Google Scholar 

  • Bennett, A.F. and W.P. Budgell (1987): ‘Ocean Data Assimilation and the Kalman Filter: Spatial Regularity’. Journal of Physical Oceanography, 17(10), 1583–1601.

    Article  Google Scholar 

  • Bloom, S.C. (1983): ‘The use of Dynamical Constraints in the use of Mesoscale Rawinsonde Data’. Tellus, 35A, 363–378.

    Article  Google Scholar 

  • Bretherton, F.P., R.E. Davis and C.B. Fandry (1976): ‘A Technique for Objective Analysis and Design of Oceanographic Experiments Applied to MODE-73’. Deep-Sea Research, 23, 558–582.

    Google Scholar 

  • Browning, G., A. Kasahara and H.O. Kreiss (1980): ‘Initialisation of the Primitive Equations by the Bounded Derivative Method’. Journal of Atmospheric Science, 37, 1424–1436.

    Article  Google Scholar 

  • Bube, K.P. and M. Ghil (1981): ‘Assimilation of Asynoptic Data and the Initialisation Problem’ Pp 111–138 in: Dynamic Meteorology: Data Assimilation Methods. (Editors: Bengtsson, L., M. Ghil and E. Kallen). Springer-Verlag, New York, 330pp.

    Chapter  Google Scholar 

  • Budgell, W.P. (1986): ‘Nonlinear Data Assimilation for Shallow Water Equations in Branched Channels’. Journal of Geophysical Research, 91(C9), 10633–10644.

    Article  Google Scholar 

  • Carlton, A.G. (1962): ‘Linear Estimation in Stochastic Processes’. The John-Hopkins University, Applied Physics Laboratory, Bumblebee Series Report 311, Baltimore, Maryland.

    Google Scholar 

  • Courant, R. and D. Hilbert (1962): Methods of Mathematical Physics. Vols I and II. Interscience. 830pp.

    Google Scholar 

  • Courtier, P. and O. Talagrand (1987): ‘Variational Assimilation of Meteorological Observations with the Adjoint Vorticity Equation. II: Numerical Results’. Quarterly Journal of the Royal Meteorological Society, 113(478), 1329–1347.

    Article  Google Scholar 

  • Daley, R. (1981): ‘Normal Mode Initialisation’. Pp 77–110 in: Dynamic Meteorology: Data Assimilation Methods. (Editors: Bengtsson, L., M. Ghil and E. Kallen). Springer-Verlag, New York, 330pp.

    Chapter  Google Scholar 

  • DeMey, P. and A.R. Robinson (1987): ‘Assimilation of Altimeter Eddy Fields in a Limited-Area Quasi-Geostrophic Model’. Journal of Physical Oceanography, 17(12), 2280–2293.

    Article  Google Scholar 

  • Deutsch, R. (1965): Estimation Theory. Prentice-Hall, Englewood Cliffs, N.J., 269pp.

    Google Scholar 

  • Freeland, H.J. and W.J. Gould (1976): ‘Objective Analysis of Meso-Scale Ocean Circulation Features’. Deep-Sea Research, 23, 915–923.

    Google Scholar 

  • Gandin, L.S. (1965): Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, Jerusalem, 242pp.

    Google Scholar 

  • Garrett, C. and D. Greenberg (1977): ‘Predicting Changes in the Tidal Regime: The Open Boundary Problem’. Journal of Physical Oceanography, 7(2), 171–181.

    Article  Google Scholar 

  • Gauss, K.F. (1809): it Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections. rm Dover, New York. [Republished 1963]

    Google Scholar 

  • Ghil, M., S.Cohn, J.Tavantzis, K.Bube and E.Isaacson (1981): ‘Applications of Estimation Theory to Numerical Weather Prediction’. Pp 139–224 in: Dynamic Meteorology: Data Assimilation Methods. (Editors: Bengtsson, L., M. Ghil and E. Kallen). Springer-Verlag, New York, 330pp.

    Chapter  Google Scholar 

  • Gill, P.E., W. Murray and M.H. Wright (1982): Practical Optimisation. Academic Press, London.

    Google Scholar 

  • Gustavsson, N. (1981): ‘A Review of Methods for Objective Analysis’. Pp 17–76 in: Dynamic Meteorology: Data Assimilation Methods. (Editors: Bengtsson, L., M. Ghil, and E. Kallen). Springer-Verlag, New York, 330pp.

    Chapter  Google Scholar 

  • Heemink, A.W. (1986): ‘Storm Surge Prediction using Kalman Filtering’. Rijkswaterstaat Communications, 46,194pp.

    Google Scholar 

  • Hoffmann, R.N. (1986): ‘A Four-Dimensional Analysis Exactly Satisfying the Equations of Motion’. Monthly Weather Review, 114, 388–397.

    Article  Google Scholar 

  • Hollingsworth, A., A.C. Lorenc, M.S. Tracton, K. Arpe, G. Cats, S. Uppala and P. Kallberg (1985): ‘The Response of Numerical Weather Prediction Systems to FGGE Level IIb Data. Part I: Analyses’. Quarterly Journal of the Royal Meteorological Society, 111,1–66.

    Article  Google Scholar 

  • Hurlburt, H.E. (1986): ‘Dynamic Transfer of Simulated Altimeter Data into Subsurface Information by a Numerical Ocean Model’. Journal of Geophysical Research, 91(C2), 2372–2400.

    Article  Google Scholar 

  • Husain, T. (1985): ‘Kalman Filter Estimation in Flood Forecasting’. Advances in Water Resources, 8(1), 15–21.

    Article  Google Scholar 

  • Jazwinski, A.H. (1970): Stochastic Processes and Filtering Theory. Academic Press, New York.

    Google Scholar 

  • Jones, R.H. (1965): ‘Optimal Estimation of Initial Conditions for Numerical Prediction’. Journal of Atmospheric Sciences, 22, 658–663.

    Article  Google Scholar 

  • Kalman, R.E. (1960): ‘A New Approach to Linear Filtering and Prediction Problems’. Journal of Basic Engineering, Transactions ASME, 82D, 33–45.

    Google Scholar 

  • Kalman, R.E. and R.S. Bucy (1961): ‘New Results in Linear Filtering and Prediction Theory’. Journal of Basic Engineering, Transactions ASME, 83D, 95–108.

    Article  Google Scholar 

  • Kindle, J.C. (1986): ‘Sampling Strategies and Model Assimilation of Altimeter Data for Ocean Monitoring and Prediction’. Journal of Geophysical Research, 91(C2), 24181–2432.

    Article  Google Scholar 

  • Kreiss, H.O. (1978): ‘Problems with Different Time Scales’. Pp 95–106 in: Recent Advances in Numerical Analysis. (Editors: C. de Boor and G.H. Golub). Academic Press, New York.

    Google Scholar 

  • Kwakernaak, H. and R. Sivan (1972): Linear Objective Control Systems. Wiley-Interscience.

    Google Scholar 

  • LeDimet, F.X. (1982): A General Formalism of Variational Analysis. CIMMS Report 22, Cooperative Institute for Mesoscale Meteorological Studies, 815 Jenkins Street, Norman, Oklahoma, USA, 34pp.

    Google Scholar 

  • LeDimet, F.X., and O. Talagrand (1986): ‘Variational Algorithms for Analysis and Assimilation of Meteorological Observations: Theoretical Aspects’. Tellus, 38A, 97–110.

    Article  Google Scholar 

  • Leith, C.E. (1980): ‘Nonlinear Normal Mode Initialisation and Quasi-Geostrophic Theory’. Journal of Atmospheric Sciences, 37, 958–968.

    Article  Google Scholar 

  • Lewis, J.M. (1982): ‘Adaption of P.D. Thompson’s Scheme to the Constraint of Potential Vorticity Conservation’. Monthly Weather Review, 110, 1618–1634.

    Article  Google Scholar 

  • Lewis, J.M. and L. Panetta (1983): ‘The Extension of P.D. Thompson’s Scheme to Multiple Time Levels’. Journal of Climatology and Applied Meteorology, 22, 1649–1653.

    Article  Google Scholar 

  • Lewis, J.M. and J.C. Derber (1985): ‘The Use of Adjoint Equations to Solve a Variational Adjustment Problem with Convective Constraints’. Tellus, 37A, 309–322.

    Article  Google Scholar 

  • Lorenc, A. (1981): ‘A Global Three-Dimensional Multivariate Statistical Interpolation Scheme’. Monthly Weather Review, 109, 701–721.

    Article  Google Scholar 

  • Lorenc, A. (1986): ‘Analysis Methods for Numerical Weather Prediction’. Quarterly Journal of the Royal Meteorological Society, 112(474), 1177–1194.

    Article  Google Scholar 

  • Lorenc, A. (1988): ‘Optimal Nonlinear Objective Analysis’. Quarterly Journal of the Royal Meteorological Society, 114(479), 205–240.

    Article  Google Scholar 

  • Machenhauer, B. (1977): ‘On the Dynamics of Gravity Oscillations in a Shallow Water Model with Application to Normal Mode Initialization’. Beitrage zur Physik der Atmosphare, 50, 253–271.

    Google Scholar 

  • Malanotte-Rizzoli, P. and W.R. Holland (1986): ‘Data Constraints Applied to Models of the Ocean General Circulation. Part I: The Steady Case’. Journal of Physical Oceanography, 16(10), 1665–1682.

    Article  Google Scholar 

  • McPherson, R.D., K.H. Bergman, R.E. Kistler, G.E. Rasch and D.S. Gordon (1979): ‘The NMC Operational Global Data Assimilation System’. Monthly Weather Review, 107, 1445–1461.

    Article  Google Scholar 

  • Marshall, J.C. (1985a): ‘Determining the Ocean Circulation and Improving the Geoid from Satellite Altimetry’. Journal of Physical Oceanography, 15(3), 330–349.

    Article  Google Scholar 

  • Marshall, J.C. (1985b): ‘Altimetric Observing Simulation Studies with an Eddy Resolving Ocean Circulation Model’. pp.73–76 in The Use of Satellite Data in Climate Models, compiled by J.J.Hunt. ESA Scientific and Technical Publications Branch, Noordwijk, The Netherlands, 191pp.

    Google Scholar 

  • Maybeck, P.S. (1979): Stochastic Processes, Estimation and Control, Vol I. Academic Press, New York.

    Google Scholar 

  • Maybeck, P.S. (1982): Stochastic Processes, Estimation and Control, Vol II. Academic Press, New York.

    Google Scholar 

  • Miller, R.N. (1986): ‘Toward the Application of the Kalman Filter to Regional Open Ocean Modelling’. Journal of Physical Oceanography, 16, 72–86.

    Article  Google Scholar 

  • Miyakoda, K. and O. Talagrand (1971): ‘The Assimilation of Past Data in Dynamical Analysis’. Tellus, 23, 310–317.

    Article  Google Scholar 

  • Moore, A.M., N.S. Cooper and D.L.T. Anderson (1987): ‘Initialization and Data Assimilation in Models of the Indian Ocean’. Journal of Physical Oceanography, 17(11), 1965–1977.

    Article  Google Scholar 

  • Morel, P., G. Lefevre and G. Rabreau (1971): ‘On Initialisation and Non-Synoptic Data Assimilation’. Tellus, 23, 197–206.

    Article  Google Scholar 

  • Morse, P.M. and H. Feshbach (1953): Methods of Theoretical Physics: Volume I. McGraw-Hill, New York, 997pp.

    Google Scholar 

  • Parrish, D.F. and S.E. Cohn (1985): A Kalman Filter for a Two-Dimensional Shallow Water Model: Formulation and Preliminary Experiments. Office Note 304, NOAA/NMC, 64pp.

    Google Scholar 

  • Penenko, V.V. and N.N. Obraztsov (1976): ‘A Variational Initialization Method for the Fields of the Meteorological Elements’ (English Translation). Soviet Meteorology and Hydrology, 1976 (11), 1–11.

    Google Scholar 

  • Petersen, D.P. (1968): ‘On the Concept and Implementation of Sequential Analysis for Linear Random Fields’ Tellus, 20, 673–686.

    Article  Google Scholar 

  • Petersen, D.P. (1973): A Comparison of the Performance of Quasi-optimal and Conventional Objective Analysis Schemes. Journal of Applied Meteorology, 12, 1093–1101.

    Article  Google Scholar 

  • Powell, M.J.D. (1977): ‘Restart Procedures for the Conjugate Gradient Method’. Mathematical Programming, 12, 241–254.

    Article  Google Scholar 

  • Press, W.H., B.F. Flannery, S.A. Teukolsky and W.T. Vettering (1986): Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge, 818pp.

    Google Scholar 

  • Rodgers, C.D. (1976): ‘Retrieval of Atmospheric Temperature and Composition from Remote Measurements of Thermal Radiation’. Reviews of Geophysics and Space Physics, 14, 609–624.

    Article  Google Scholar 

  • Rutherford, I.D. (1972): ‘Data Assimilation by Statistical Interpolation of Forecast Error Fields’. Journal of Atmospheric Sciences, 29, 809–815.

    Article  Google Scholar 

  • Sasaki, Y. (1969): ‘Proposed Inclusion of Time Variational Terms, Observational and Theoretical, in Numerical Variational Objective Analysis’. Journal of the Meteorological Society of Japan, 47, 115–124.

    Google Scholar 

  • Sasaki, Y. (1970): ‘Some Basic Formalisms in Numerical Variational Analysis’. Monthly Weather Review, 98, 875–883.

    Article  Google Scholar 

  • Sasaki, Y.K., T. Gal-Chen, L.White, M.M. Zaman and C. Ziegler (1986): Variational Methods in Geosciences. Elsivier, New York.

    Google Scholar 

  • Sorenson, H.W. (1966): ‘Kalman Filtering Techniques’. Advances in Control Systems, Vol 3. (Editor: C.T. Leondes). Academic Press, New York, 346pp.

    Google Scholar 

  • Swerling, P. (1959): ‘First Order Error Propagation in a Stage-Wise Smoothing Procedure for Satellite Observations’, Journal of Astronautical Science, 6, 46–52.

    Google Scholar 

  • Talagrand, O. (1981a): ‘A Study of the Dynamics of Four-Dimensional Data Assimilation’. Tellus, 33, 43–60.

    Article  Google Scholar 

  • Talagrand, O. (1981b): ‘On the Mathematics of Data Assimilation’. Tellus, 33, 321–339.

    Article  Google Scholar 

  • Talagrand, O. (1981c): ‘Convergence of Assimilation Procedures’. Pp 225–262 in: Dynamic Meteorology: Data Assimilation Methods. (Editors: Bengtsson, L., M. Ghil and E. Kallen). Springer-Verlag, New York, 330pp.

    Chapter  Google Scholar 

  • Talagrand, O. and P. Courtier (1987): ‘Variational Assimilation of Meteorological Observations with the Adjoint Vorticity Equation. I: Theory’. Quarterly Journal of the Royal Meteorological Society, 113(478), 1311–1328.

    Article  Google Scholar 

  • Tarantola, A. (1987): Inverse Problem Theory. Elsevier, Amsterdam, 613pp.

    Google Scholar 

  • Thompson, J.D. (1986): ‘Altimeter Data and Geoid Error in Mesoscale Ocean Prediction: Some Results from a Primitive Equation Model’. Journal of Geophysical Research, 91(C2), 2401–2417.

    Article  Google Scholar 

  • Thompson, P.D. (1969): ‘Reduction of Analysis Error through Constraints of Dynamical Consistency’. Journal of Applied Meteorology, 8(5), 738–742.

    Article  Google Scholar 

  • Timchenko, I.E. (1984): Stochastic Modelling of Ocean Dynamics. Harwood Academic Publishers, 311pp. [Translated by E.T. Premuzic.]

    Google Scholar 

  • Tzafestas, S.G. (1978): ‘Distributed Parameter State Estimation’. In: Distributed parameter systems: Identification, Estimation and Control, Eds: W.H. Ray and D.G. Lainiotis. Marcel Dekker, 135–208.

    Google Scholar 

  • Webb, D.J. and A. Moore (1986): ‘Assimilation of Altimeter Data into Ocean Models’. Journal of Physical Oceanography, 16, 1901–1913.

    Article  Google Scholar 

  • Williamson, D. and R. Dickinson (1972): ‘Periodic Updating of Meteorological Variables’. Journal of Atmospheric Sciences, 29, 190–193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Webb, D.J. (1989). Assimilation of Data into Ocean Models. In: Anderson, D.L.T., Willebrand, J. (eds) Oceanic Circulation Models: Combining Data and Dynamics. NATO ASI Series, vol 284. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1013-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1013-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6946-5

  • Online ISBN: 978-94-009-1013-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics