Skip to main content

Analysis of backscattered ultrasound from normal and diseased arterial wall

  • Chapter
  • 72 Accesses

Abstract

Intra-arterial ultrasonic imaging has several features which affect the feasibility of clinical tissue characterization when compared with trans-thoracic ultrasound. The short distance from transducer to tissue, fluid path, high frequencies, and special characteristics of the tissues of interest all contribute to making practical tissue characterization by measurement of the backscattered signal more probable in intra-arterial imaging. The properties of backscattered ultrasound, and methods of characterizing such signals, are discussed with special reference to intra-arterial applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fraker Jr. TD, Nelson D, Arthur J, Wilkerson RD. Altered acoustic reflectance on two-dimensional echocardiography as an early predictor of myocardial infarct size. Am J Cardiol 1984; 53: 1699–1702.

    Article  PubMed  Google Scholar 

  2. Shaw TRD, Logan-Sinclair RB, Surin C, McAnulty RJ, Heard B, Laurent GJ, Gibson DG. Relation between regional echo intensity and myocardial connective tissue in chronic left ventricular disease Br Heart J 1984; 51: 46–53.

    CAS  Google Scholar 

  3. Cohen RD, Mottley JG, Miller JG, Kurnik PB, Sobel BE. Detection of ischemic myocardium in vivo through the chest wall by quantitative ultrasonic tissue characterization. Am J Cardiol 1982; 50: 838–43.

    Article  PubMed  CAS  Google Scholar 

  4. Yock PG, Johnsen EL, Linker DT. Intravascular ultrasound: Development and clinical potential. Am J Card Imaging 1988; 2(3): 185–93.

    Google Scholar 

  5. Roelandt JR, Serruys PW, Bom N, Gussenhoven EJ, van Egmond FC, Lancée CT, ten Hoff H, van Alphen WJ. Intravascular real-time high resolution two-dimensional echocardiography. J Am Coll Card 1989; 13(2): 4A (abstract).

    Article  Google Scholar 

  6. Nicholas D. Evaluation of backscattering coefficients for excised human tissues: Results, interpretation and associated measurements. Ultrasound Med Biol 1982; 8(1): 17–28.

    Article  Google Scholar 

  7. Rayleigh JWS. The Theory of Sound. Dover Publishers, New York 1896.

    Google Scholar 

  8. Parker KJ, Wagg RC. Measurements of ultrasonic attenuation within regions selected from B-scan images. IEEE Trans Biomed Eng BME 1983; 30(8): 431–37.

    Article  CAS  Google Scholar 

  9. Jang HS, Lee MH, Park SB. Ultrasound attenuation estimation using the LMSE filters and the median filter. Ultrasound in Med & Biol 1988; 14(1): 51–8.

    Article  CAS  Google Scholar 

  10. Temkin S. Elements of acoustics. John Wiley & Sons, New York 1981.

    Google Scholar 

  11. Waag RC, Nilsson JO. Characterization of volume scattering power spectra in isotropic media from power spectra of scattering by planes. J Acoust Soc Am 1982; 74(5): 1555–71.

    Article  Google Scholar 

  12. Angelsen BAJ. A theoretical study of the scattering of ultrasound from blood. IEEE Trans Biomed Eng BME 1980; 30(2): 61–7.

    Article  Google Scholar 

  13. Picano E, Landini L, Lattanzi F, Mazzarisi A, Sarnelli R, Distante A, Benassi A, L’Abbate A. The use of frequency histograms of ultrasonic backscatter amplitudes for detection of atherosclerosis in vitro. Circ 1986; 74(5): 1093–8.

    Article  CAS  Google Scholar 

  14. Linker DT, Hansen AS, Tveito Å, Wood J, Torp H, Angelsen BAJ. A two-dimensional simulation of ultrasonic speckle based on acoustic micrographs of human myocardium. In Computers in Cardiology, IEEE Computer Society, Long Beach 1987; 57–61.

    Google Scholar 

  15. Collins SM, Skorton DJ, Prasad NV, Olshansky B, Bean JA. Quantitative echocardiographic image texture. Normal contraction related variability. IEEE Trans Med Image 1985; MI-4(4): 185–92.

    Article  CAS  Google Scholar 

  16. Linker DT, Angelsen BAJ, Popp RL. Acoustic microscopy of normal and myopathic human myocardium: Implications for ultrasonic tissue characterization. J Am Coll Card 1987; 9(2, suppl. A): 211A (abstract).

    Google Scholar 

  17. Gussenhoven EJ, Essed CE, Lancée CT, Mastik F, Frietman P, van Egmond FC, Reiber J, Bosch H, van Urk H, Roelandt J, Bom N. Arterial wall characteristics determined by intravascular ultrasound imaging: and in vitro study. J Am Coll Cardiol (in press) 1989.

    Google Scholar 

  18. Picano E, Landini L, Distante A, Benassi A, Sarnelli R, L’Abbate A. Fibrosis, lipids, and calcium in human atherosclerotic plaque: In vitro differentiation from normal aortic walls by ultrasonic attenuation. Circ Res 1985; 56: 556–62.

    PubMed  CAS  Google Scholar 

  19. Picano E, Landini L, Distante A, Salvadori M, Lattanzi F, Masini M, L’Abbate A. Angle dependence of ultrasonic backscatter in arterial tissues: A study in vitro. Circ 1985; 72(3): 572–6.

    Article  CAS  Google Scholar 

  20. Picano E, Landini L, Distante A, Sarnelli R, Benassi A, L’Abbate A. Different degrees of atherosclerosis detected by backscattered ultrasound: An in vitro study on fixed human aortic walls. J Clin Ultrasound 1983; 11: 375–9.

    Article  PubMed  CAS  Google Scholar 

  21. Barzilai B, Saffitz J, Miller J, Sobel B. Quantitative ultrasonic characterization of the nature of atherosclerotic plaques in human aorta. Circ Res 1987; 60: 459–63.

    PubMed  CAS  Google Scholar 

  22. Landini L, Sarnelli R, Picano E, Salvadori M. Evaluation of frequency dependence of backscatter coefficient in normal and atherosclerotic aortic walls. Ultrasound Med & Biol 1986; 12(5): 397–401.

    Article  CAS  Google Scholar 

  23. Linker DT, Yock PG, Thapliyal HV, Arenson JW, Johansen E, Grønningsaether A, Lønstad HK, Angeisen BAJ. In vitro analysis of backscattered amplitude from normal and diseased arteries using a new intraluminal ultrasonic catheter. J Am Coll Card 1988; 11(2, suppl. A), 4A (abstract).

    Google Scholar 

  24. Kolosov OV, Levin VM, Mayev RG, SenjushkinaTA. The use of acoustic microscopy for biological tissue characterization. Ultrasound in Med & Biol 1987; 13(8): 477–83.

    Article  CAS  Google Scholar 

  25. Monsen C, Ambrose JA, Borrico S, Cohen M, Sherman W, Gorlin R, Fuster V. Patterns of dilation during coronary angioplasty. J Am Coll Cardiol 1989; 13(2): 58A (abstract).

    Google Scholar 

  26. Linker DT, Johansen E, Slørdal S, Yock PG, Grønningæeter Å, Peine H, Angelsen BAJ. In vivo measurement of segmental arterial wall stiffness in pigs using a real-time ultrasonic sector imaging catheter. J Am Coll Card 1989; 13(2, suppl. A): 218 A (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

N. Bom J. Roelandt

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Linker, D.T., Yock, P.G., Grønningsæther, Å., Johansen, E., Angelsen, B.A.J. (1989). Analysis of backscattered ultrasound from normal and diseased arterial wall. In: Bom, N., Roelandt, J. (eds) Intravascular ultrasound. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1007-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1007-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6943-4

  • Online ISBN: 978-94-009-1007-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics