Skip to main content

Formation of Wind-Erodible Aggregates for Salty Soils and Soils with Less Than 50% Sand Composition in Natural Terrestrial Environments

  • Chapter
Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport

Part of the book series: NATO ASI Series ((ASIC,volume 282))

Abstract

Of nine possible mechanisms for the formation of non-sandy, wind-erodible aggregates from a more homogeneous soil or sediment, five are found to be widespread in arid and semiarid regions. In approximate order of significance, the most important mechanisms are tension and compression fracturing of shrinkable mud or soil during wet/dry cycles; tension fracturing and molding by compression during freeze/thaw cycles; direct abrasion (corrosion); fracturing and aggregation produced by salt efflorescence; and mechanical disturbance of surface materials by animals. A sixth mechanism (in soils) is by surface films, colloidal matting, or cements. Minor mechanisms are: floatation and lofting of foam and fracturing caused by hydration expansion or other chemical weathering of fine-grained bedrock. The flocculation of small particles in a water suspension or wet mud is a possible minor mechanism not yet observed. Surface soils and sediments with more than 28% clay and more than 2% organic material formed wind-erodible aggregates, but organic-poor materials did not. Calcareous loams, silt loams, silty clay loams, and clay loams formed wind-erodible aggregates, but non-calcareous materials of the same textures did not. Salt efflorescence was locally a major mechanism for production of wind-erodible aggregates. An experiment with expandible (high smectite content) clay shows that wet/dry cycles (such as might result from several summer rain showers on a dry lake bed) can produce wind-erodible aggregates without high temperatures or lengthy droughts and in the absence of salt efflorescence. For example, cold-climate clay dunes (now inactive) fringe ephemeral lakes in deflation basins in Montana at windy semiarid sites with short hot summers and intensely cold winters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arvidson, R.E., 1972: Aeolian processes on Mars: Erosive velocities, settling velocities, and yellow clouds, Geol. Soc. Amer. Bull., 83: 1503–1508.

    Article  Google Scholar 

  • Bagnold, R.A., 1941: The Physics of Blown Dust and Desert Dunes, Methuen, London, 265 pp.

    Google Scholar 

  • Barone, J.B., Ashbaugh, L.L., Kusko, B.H., and Cahill, T.A., 1981: The effect of Owens Dry Lake on air quality in the Owens Valley with implications for the Mono Lake Area, Am. Chem. Soc. Sympos., Ser. 67: 237–345.

    Google Scholar 

  • Baver, L.D., Gardner, W.H., and Gardner, W.R., 1972: Soil Physics, Fourth Edition, John Wiley and Sons, New York, 498 pp.

    Google Scholar 

  • Bowler, J.M., 1973: Clay dunes: Their occurrence, formation and environmental significance, Earth Sci. Rev., 9: 315–338.

    Article  Google Scholar 

  • Bryan, R.B., 1974: Water erosion by splash and wash and the erodibility of Albertan soils, Geograf. Annal., 56: 159–181.

    Article  Google Scholar 

  • Buckman, H.O., and Brady, N.C., 1970: The Nature and Properties of Soils, Macmillan, London, 653 pp.

    Google Scholar 

  • Caine, N., Morin, P., and Nicholas, R.M., 1977: Significance of frost action and surface soil characteristics to wind erosion at Rocky Flats, Colorado, Third Progress Report, Oct. 1, 1976-June 1977, ERDA-510500, ERDA-510100, U7805, 65 pp.

    Google Scholar 

  • Chepil, W.S., 1945: Dynamics of wind erosion, II: Initiation of soil movement, Soil Sci., 60: 397–411.

    Article  Google Scholar 

  • Chepil, W.S., and Woodruff, N.P., 1963: The physics of wind erosion and its control, In: Norman, A.G. (Ed.),Advances in Agronomy, v. 15, Academic Press, New York, pp. 1–301.

    Chapter  Google Scholar 

  • Corte, A., and Higashi, A., 1964: Experimental research on desiccation cracks in soil, Research Report 66, U.S. Army Materiel Command, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 72 pp.

    Google Scholar 

  • Dare-Edwards, A.J., 1982: Clay pellets of clay dunes: Types, mineralogy, origin and effect of pedogenesis, In: Wassen, R.J. (Ed.), Quaternary Dust Mantles of China, New Zealand and Australia, Australian National University, Canberra, pp. 179–189.

    Google Scholar 

  • Dare-Edwards, A.J., 1984: Aeolian clay deposits of south-eastern Australia: parna or loessic clay?, Trans. Inst. Br. Geogr., M.S. 9: 337–344.

    Article  Google Scholar 

  • DeGraff, J.M., and Aydin, A., 1987: Surface morphology of columnar joints and its significance to mechanics and direction of joint growth, Geol. Soc. Amer. Bull., 99: 605–617.

    Article  Google Scholar 

  • Gillette, D., 1978: Tests with a portable wind tunnel for determining wind erosion threshold velocities, Atmos. Environ., 12: 2309–2313.

    Article  Google Scholar 

  • Gillette, D., 1984a: Threshold velocities for wind erosion on natural terrestrial arid surfaces (a summary), In: Pruppacher, Semonin, and Slinn (Eds.), Precipitation Scavenging, Dry Deposition, and Resuspension, Elsevier, New York, pp. 1047–1057.

    Google Scholar 

  • Gillette, D., 1984b: Threshold friction velocities and moduli of rupture at Owens Lake, California, In: Results of Test Plot Studies at Owens Dry Lake, Inyo County, California, Report prepared for State Lands Commission, by WESTEC Services, San Diego, CA.

    Google Scholar 

  • Gillette, D., Adams, J., Endo, A., Smith, D., and Kihl, R., 1980: Threshold velocities for input of soil particles into the air by desert soils, J. Geophys. Res., 85: 5621–5630.

    Article  Google Scholar 

  • Gillette, D., Adams, J., Muhs, D., and Kihl, R., 1982: Threshold friction velocities and rupture moduli for crusted desert soil for the input of soil particles into the air, J. Geophys. Res., 87: 9003–9015.

    Article  Google Scholar 

  • Greeley, R., and Iversen, J.D., 1985: Wind as a Geological Process on Earth, Mars, Venus and Titan, Cambridge University Press, Cambridge, 333 pp.

    Book  Google Scholar 

  • Greeley, R., Iversen, J.D., Pollack, J.B., and White, B.R., 1974: Wind tunnel studies of Martian aeolian processes, Proc. Roy. Soc. London A, 341: 331–336.

    Article  Google Scholar 

  • Hess, S.L., 1973: Martian winds and dust clouds, Planet. Space Sci., 21: 1549–1557.

    Article  Google Scholar 

  • Huffman, G.G., and Price, W.A., 1949: Clay dune formation near Corpus Christi, Texas, J. Sed. Pet., 19: 118–127.

    Google Scholar 

  • Ishihara, T., and Iwagaki, Y., 1952: On the effect of sand storm in controlling the mouth of the Kiku River, Bulletin No. 2, Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan.

    Google Scholar 

  • Iversen, J.D., Pollack, J., Greeley, R., and White, B., 1976: Saltation threshold on Mars: The effect of interparticle force, surface roughness, and low atmospheric density, Icarus, 29: 381–393.

    Article  Google Scholar 

  • Jackson, M.L., 1975: Soil Chemical Analysis, Originally published by Prentice-Hall, now published by the author, Department of Soil Science, University of Wisconsin, Madison, WI.

    Google Scholar 

  • Marrs, R.W., and Kolm, K.E. (Eds.), 1982: Interpretation of wind flow characteristics from eolian landforms, Geol. Soc. Amer. Spec. Paper, 192,112 pp.

    Google Scholar 

  • Nickling, W.G. (Ed.), 1986: Aeolian Geomorphology, Allen and Unwin, Boston, 311 pp.

    Google Scholar 

  • Phillips, M., 1980: A force balance model for particle entrainment in a fluid stream, J. Phys. D: Appl. Phys., 13: 221–233.

    Article  Google Scholar 

  • Price, W.A., 1963: Physicochemical and environmental factors in clay dune genesis, J. Sed. Pet., 33: 766–778.

    Google Scholar 

  • Pye, K., 1987: Aeolian Dust and Dust Deposits, Academic Press, London, pp. 10–28.

    Google Scholar 

  • Roth, E.S., 1960: The silt-clay dunes of Clark Dry Lake, California, The Compass, 38: 18–27.

    Google Scholar 

  • Ryan, J.A., 1964: Notes on the Martian yellow clouds, Geophys. Res., 69: 3750–3770.

    Article  Google Scholar 

  • Sagan, C., and Pollack, J., 1969: Wind blown dust on Mars, Nature(London), 223: 791–794.

    Google Scholar 

  • Vershinin, P.V., 1958: The Background of Soil Structure, (Pochvennaya Struktura i Usloviya ee Formirovaniya). S.I. Dolgov (Ed.), Izdatel’stvo Akademii Nauk SSSR, Moskva-Leningrad. (Translated from Russian, Israel Program for Scientific Translations, Jerusalem, 1971, 128 pp.)

    Google Scholar 

  • Wasson, R.J., 1983: Dune sediment types, sand colour, sediment provenance and hydrology in the Strzelecki-Smpson dunefield, Australia, In: Brookfield, M.E. and T.S. Ahlbrandt, (Eds.),Eolian Sediments and Processes, Developments in Sedimentology, 38, Elsevier, Amsterdam, 165–195.

    Chapter  Google Scholar 

  • Wood, G.P., Weaver, W., and Henry, R., 1974: The minimum free-stream wind for initiating motion of surface material on Mars, NASA TM X-71959, Langley Research Center, Hampton, VA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Breuninger, R.H., Gillette, D.A., Kihl, R. (1989). Formation of Wind-Erodible Aggregates for Salty Soils and Soils with Less Than 50% Sand Composition in Natural Terrestrial Environments. In: Leinen, M., Sarnthein, M. (eds) Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. NATO ASI Series, vol 282. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0995-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0995-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6937-3

  • Online ISBN: 978-94-009-0995-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics