Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 282))

Abstract

Major sources for crustal - derived aerosol are the earth’s arid and semiarid regions. Soil size distributions of different locations in the Sahara have, therefore, been analysed and allow us to hypothesize a particle loss mostly for the size range of radius smaller than 20 µm due to erosion. Cumulative mass distributions emphasize an apparent difference in the productivity of the soil types considered. Furthermore, the physical properties and radiative characteristics of desert dust such as size distribution, source strength, deposition rate, extinction, scattering, and absorption coefficients, single scattering albedo, asymmetry factor, and optical depth, that are relevant quantities required to estimate the aerosol impact on present day climate and likely to reconstruct the earth’s past climate, have been observed or computed, and discussed. About 600 – 700 Tg of crustal material are mobilized from the Sahara and 1800 – 2000 Tg worldwide and injected into the atmosphere each year. A considerable part of that amount contributes to the sediments of the Atlantic, the Mediterranean, and the Pacific. Both computed and observed data indicate desert dust as one of most prominant aerosol types with the highest variability in its microphysical components as well as in its radiative characteristics, and the best absorber in the atmospheric transparency window. It has been pointed out that the presence of desert dust leads to a warming due to the absorption of solar radiation in the dust layer and above the dust layer, a corresponding cooling due to the backscattered solar radiation, and a challenging warming due to the absorption of the thermal infrared radiation below the dust cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Sarnthein: Sand Deserts During Glacial Maximum and Climatic Optimum, Nature 272, 43–46 (1978).

    Article  Google Scholar 

  2. J. - R. Petit, M. Briat, A. Royer, 1981: Ice Age Aerosol Content from East Antarctic Ice Core Samples and Past Wind Strength, Nature, 293, 391–394 (1981).

    Article  Google Scholar 

  3. D. Tanre, J.F. Geleyn, J. Slingo: First Results of the Introduction of an Advanced Aerosol - Radiation Interaction in the ECMWF Low Resolution Global Model, in H.E. Gerber and A. Deepak (eds.), Aerosol and their Climatic Effects, A Deepak Publishing, Hampton, Va., pp. 133–177 (1984).

    Google Scholar 

  4. J.H. Joseph: The Effect of a Desert Aerosol on a Model of General Circulation, in H. -J. Bolle (ed.), Proceedings of the Symposium on Radiation in the Atmosphere, Science Press, 487–492 (1977).

    Google Scholar 

  5. G.E. Shaw: Considerations on the Origin and Properties of the Antarctic Aerosol, Rev. Geophys. Space Phys., 8, 1983–1998 (1979a).

    Article  Google Scholar 

  6. C.G. Ehrenberg: Erläuterung eines neuen wirklichen Passatstaubes aus dem Atlantischen Dunkelmeere von 29. Okt. 1861, Monatsber. Kg. Preuss. Akad. Wiss., Berlin, 202–224 (1862).

    Google Scholar 

  7. W. Semmelhack: Die Staubfalle in nordwest afrikanischen Gebiet des Atlantischen Ozeans, Annalen der Hydrographie, 62, 273–277 (1934).

    Google Scholar 

  8. T.N. Carlson, J.M. Prospero: The Large Movement of Saharan Air Outbreak over the Northern Equatorial Atlantic. J. Appl. Meteorol. 11, 283–297 (1972).

    Article  Google Scholar 

  9. J.M. Prospero, T.N. Carlson: Vertical and Areal Distribution of Saharan Dust over the Western Equatorial North Atlantic Ocean, J. Geophys. Res., 77, 5255–5265 (1972).

    Article  Google Scholar 

  10. L. Schütz: Long - Range Transport of Desert Dust with Special Emphasis on the Sahara, Ann. N.Y. Acad. Sci. 338, 515–532 (1980).

    Article  Google Scholar 

  11. J.M. Prospero: Mineral and Sea - Salt Aerosol Concentration in the Various Ocean Regions. J. Geophys. Res., 84, 725–731 (1979).

    Article  Google Scholar 

  12. J.M. Prospero, R.A. Glaccum, R.T. Nees: Atmospheric Transport of Soil Dust from Africa to South America, Nature 289, 570–572 (1981).

    Article  Google Scholar 

  13. G.E. Shaw: Transport of Desert Aerosol to the Hawaiian Islands, J. Appl. Meteorol., 19, 1254–1259 (1980).

    Article  Google Scholar 

  14. M. Darzi, J.W. Winchester: Aerosol Characteristics at Mauna Loa Observatory, Hawaii, after East Asian Dust Storm Episodes, J. Geophys. Res., 87, 1251–1258 (1982).

    Article  Google Scholar 

  15. M. Uematsu, R.A. Duce, J.M. Prospero, L. Chen, J.T. Merrill, R.L. McDonald: Transport of Mineral Aerosol from Asia over the North Pacific Ocean, J. Geophys. Res., 88, 5343–5352 (1983).

    Article  Google Scholar 

  16. D.A. Braaten, T.A. Cahill, Size and Composition of Asian Dust Transported to Hawaii, Atmos. Environ. 20, 1105–1109 (1986).

    Article  Google Scholar 

  17. D.A. Gillette: On the Production of Soil Wind Erosion Aerosol Having the Potential for Long - Range Transport, J. Rech. Atmos., 8, 735–744 (1974).

    Google Scholar 

  18. D.A. Gillette, J. Adams, A. Endo, D. Smith, R. Kihl: Threshold Velocities for Input of Soil Particles with the Air by Desert Soils, J. Geophys. Res., 85, 5621–5630 (1980).

    Article  Google Scholar 

  19. G.A. d’Almeida, L. Schütz: Number, Mass, and Volume Distribution of Mineral Aerosol and Soils of the Sahara, J. Clim. Appl. Meteorol., 22, 233–243 (1983).

    Article  Google Scholar 

  20. G.A. d’Almeida: A model for Saharan Dust Transport, J. Clim. Appl. Meteorol., 24, 903–916 (1986).

    Google Scholar 

  21. G.A. d’Almeida: On the Variability of Desert Aerosol Radiative Characteristics, J. Geophys. Res. 93, 3017–3026 (1987).

    Article  Google Scholar 

  22. L. Schütz, R. Jaenicke: Particle Number and Mass Distribution above 10-4 cm Radius in Sand and Aerosol of the Sahara, J. Appl. Meteorol. 13, 863–870 (1974).

    Article  Google Scholar 

  23. A. Lerman: Geochemical Processes, Water and Sediment Environments, J. Wiley and sons, 481 pp (1979).

    Google Scholar 

  24. A. Meszaros, K. Vissy: Concentration, Size Distribution, and Chemical Nature of Atmospheric Aerosol Particles in Remote Oceanic Areas, J. Aerosol Sci. 5, 101–109 (1974).

    Article  Google Scholar 

  25. R.F. Lovett: Quantitative Measurement of Airborne Sea - Salt in the North - Atlantic, Tellus, 30, 358–364 (1978).

    Article  Google Scholar 

  26. J. Heintzenberg: Particle Size Distribution and Optical Properties of Arctic Haze, Tellus, 32, 251–260 (1980).

    Article  Google Scholar 

  27. G.A. d’Almeida, R. Jaenicke, P. Roggendorf, D. Richter: A New Sunphotometer for Network Operation, Appl. Opt. 22, 3796–3801 (1983).

    Article  Google Scholar 

  28. G.A. d’Almeida: Recommendation on Sunphotometer Measurements in the BAPMoN as Based on the Experience of a Dust Transport Study in Africa, World Meteorological Organisation, WMO/TR - 67, 30 pp, Geneva, (Switzerland) (1985).

    Google Scholar 

  29. F.E. Volz: Infrared Optical Constants of Ammonium Sulfate, Saharan Dust, Volcanic Premice, and Flyash, Appl. Opt., 12, 564–568 (1973).

    Article  Google Scholar 

  30. G.W. Grams, I.H. Blifford Jr., D.A. Gillette, P.B. Russel: Complex Index of Refraction of Airborne Soil Particles, J. Appl. Meteorol., 13, 459–471 (1974).

    Article  Google Scholar 

  31. J.F. Griffiths: Climates of Africa, in H.E. Landsberg (ed. in chief), World Survey of Climatology, Vol. 20, Elvesier Publishing Company, Amsterdam, London, New York, 604 pp (1972).

    Google Scholar 

  32. J.H. Joseph, A. Manes, D. Ashbel: Desert Aerosol Transported by Khamsinic Depressions and their Climatic Effects, J. Appl. Meteorol. 12, 792–797 (1973).

    Article  Google Scholar 

  33. S.T. Peterson, C.E. Junge: Sources of Particulate Matter in the Atmosphere, in W.W. Kellog and G.D. Robinson (eds.), Man’s Impact on Climate, MIT Press, 310–320 (1971).

    Google Scholar 

  34. C.N. Davies: Size Distribution of Atmospheric Aerosol Particles, Aerosol Sci., 5, 293–300 (1974).

    Article  Google Scholar 

  35. E.M. Patterson: Atmospheric Extinction Between 0.55 μm and 10.6 μm Due to Soil - derived Aerosol, Appl. Opt., 16, 2414–2418 (1977).

    Article  Google Scholar 

  36. G.A. d’Almeida, P. Koepke: An Approach to a Global Optical Aerosol Climatology, to be published in P. Hobbs and A. Deepak (eds.), Aerosol and Climate (1988).

    Google Scholar 

  37. G.E. Shaw: Aerosol at Mauna Loa: Optical Properties, J. Atmos. Sci., 36, 862–869 (1979b).

    Article  Google Scholar 

  38. G.E. Shaw: Atmospheric Turbidity over the Polar Regions, J. Appl. Meteorol., 21, 1080–1086 (1982)

    Article  Google Scholar 

  39. A. Angström: The Parameters of Atmospheric Turbidity, Tellus, 16, 64–75 (1964).

    Article  Google Scholar 

  40. P. Winkler: The Growth of Atmospheric Aerosol Particles as a Function of the Relative Humidity II; An Improved Concept of Mixed Nuclei, Aerosol Sci., 4, 373–387 (1973).

    Article  Google Scholar 

  41. G. Yamamoto, M. Tanaka: Increase of Global Albedo Due to Air Pollution, J. Atmos. Sci., 29, 1405–1412 (1972).

    Article  Google Scholar 

  42. W.M. Cunnington, P.R. Rowntree: Simulations of the Saharan Atmosphere Dependence on Moisture and Albedo, Quart. J.R. Met. Soc., 112, 971–999 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

d’Almeida, G.A. (1989). Desert Aerosol: Characteristics and Effects on Climate. In: Leinen, M., Sarnthein, M. (eds) Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. NATO ASI Series, vol 282. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0995-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0995-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6937-3

  • Online ISBN: 978-94-009-0995-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics