Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 281))

Abstract

Observations of fluid composition and behaviour at various structural levels in metamorphic terranes have led to an integrated crustal model for metamorphism with H2O>>CO2 fluids and high fluxes at shallow levels and less abundant CO2>>H2O compositions at depth. Anatectic removal of granitic components and H2O from the lower crust accounts for LILE-depleted granulite compositions and CO2-rich inclusions, but not for the abundance of CO2, which many workers have attributed to external (mantle) sources. A crustal-scale, closed-system circulation model is proposed, in which H2O>CO2 fluids released in low temperature devolatilization reactions are pumped downward by volume-reducing anatectic reactions. The fluid is filtered by removal of much of the H2O component in an amphibolite-facies migmatite zone; the remaining CO2-rich portion is pumped down into granulite-facies migmatites where it is trapped as inclusions or absorbed to a limited extent by magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bickle MJ, McKenzie D (1987) The transport of heat and matter by fluids during metamorphism; Contrib Mineral Petrol 95:384–392

    Article  Google Scholar 

  • Brown GC, Fyfe WS (1970) The production of granitic melts duringultrametamorphism; Contrib Mineral Petrol 28:310–318

    Article  Google Scholar 

  • Burnham CW (1975) Water and magmas: A mixing model; Geochim Cosmochim Acta 39:1077–1084

    Article  Google Scholar 

  • Clemens JD (1984) Water contents of silicic to intermediate magmas; Lithos 17:273–287

    Article  Google Scholar 

  • Clemens JD, Wall VJ (1981) Origin and crystallization of someperaluminous (S-type) granitic magmas; Can Mineral 19:111–131

    Google Scholar 

  • Collerson KD, Fryer BJ (1978) The role of fluids in the formation andsubsequent development of early continental crust; Contrib Mineral Petrol 67:151–167

    Article  Google Scholar 

  • Crawford ML, Hollister LS (1986) Metamorphic fluids: The evidence fromfluid inclusions; In Walther JV, Wood, BJ (eds) Fluid-rock interactions during metamorphism; Springer New York, 1–35

    Google Scholar 

  • Ferry JM (1980) A case study of the amount and distribution of heat and fluid during metamorphism; Contrib Mineral Petrol 77:373–385

    Article  Google Scholar 

  • Foland KA (1979) Limited mobility of argon in a metamorphic terrane; Geochim Cosmochim Acta 43: 793–801

    Article  Google Scholar 

  • Friend CRL (1981) Charnockite and granite formation and influx of CO2 atKabbaldurga; Nature 294:550–552

    Article  Google Scholar 

  • Friend CRL (1983) The link between charnockite formation and graniteproduction: evidence from Kabbaldurga, Karnataka, southern India; In Atherton MP, Gribble CD (eds) Migmatites, melting and metamorphism; Shiva, Nantwich, 264–276

    Google Scholar 

  • Friend CRL (1985) Evidence for fluid pathways through Archaean crust and the generation of the Closepet granite, Karnataka, South India; Precamb Res 27:239–250

    Article  Google Scholar 

  • Frost BR, Frost CD (1987) CO2, melts and granulite metamorphism; Nature 327:503–506

    Article  Google Scholar 

  • Fyfe WS (1973a) The granulite facies, partial melting and the Archaeancrust; Phil Trans Roy Soc Lond A273:457–461

    Google Scholar 

  • Fyfe WS (1973b) The generation of batholiths; Tectonophysics 17:273–283

    Article  Google Scholar 

  • Glassley WE (1983) Deep crustal carbonates as CO2 fluid sources: Evidence from metasomatic reaction zones; Contrib Mineral Petrol 84:15–24

    Article  Google Scholar 

  • Graham CM, Greig KM, Sheppard SMF, Turi B (1983) Genesis and mobility ofthe H2O-CO2 fluid phase during regional greenschist and epidoteamphibolite facies metamorphism: A petrological and stable isotopestudy in the Scottish Dalradian; J Geol Soc Lond 140:577–599

    Article  Google Scholar 

  • Grant JA (1986) Quartz-phiogopite-liquid equilibria and the origins ofcharnockites; Amer Mineral 71:1071–1075

    Google Scholar 

  • Hanmer S (1986) Asymmetrical pull-aparts and foliation fish as kinematicindicators; J Struct Geol 8:111–122

    Article  Google Scholar 

  • Hansen EC, Janardhan AS, Newton RC, Prame WKBN, Ravindra Kumar GR (1987) Arrested charnockite formation in southern India and Sri Lanka; Contrib Mineral Petrol 96: 225–244

    Article  Google Scholar 

  • Harris NBW, Holt RW, Drury SA (1982) Geobarometry, geothermometry and late Archean geotherms from the granulite facies terrane of SouthIndia; J Geol 90:509–528

    Article  Google Scholar 

  • Hollister LS, Crawford ML (1986) Melt-enhanced deformation: A major tectonic process; Geology 14:558–561

    Article  Google Scholar 

  • Lamb WM, Valley JW (1984) Metamorphism of reduced granulites in low-CO2vapour-free environment; Nature 312:56–58

    Article  Google Scholar 

  • Lamb WM, Valley JW, Brown PE (1987) Post-metamorphic CO2-rich fluid inclusions in granulites; Contrib Mineral Petrol 96:485–495

    Article  Google Scholar 

  • Janardhan AS, Newton RC, Hansen EC (1982) The transformation ofamphibolite facies gneiss to charnockite in southern Karnataka andnorthern Tamil Nadu India; Contrib Mineral Petrol 79:130–149

    Article  Google Scholar 

  • Newton RC (1986) Fluids of granulite facies metamorphism; In Walther JV, Wood BJ (eds) Fluid-rock interactions during metamorphism, Springer, New York, 36–59

    Google Scholar 

  • Newton RC (1987) Petrologic aspects of Precambrian granulite faciesterrains bearing on their origins; In Kroner A (ed) Proterozoiclithosphere evolution; Amer Geophys Un Geodyn Ser 17:11–26

    Google Scholar 

  • Newton RC, Smith JV, Windley BF (1980) Carbonic metamorphism, granulitesand crustal growth; Nature 288:45–50

    Article  Google Scholar 

  • Olsen SN (1984) Open- and closed-system migmatites in the Front Ranges, Colorado; Amer J Sci 282:1596–1622

    Article  Google Scholar 

  • Olsen SN (1987) The composition and role of fluids in migmatites: Afluid inclusion study of the Front Range rocks; Contrib Mineral Petrol 96:104–120

    Article  Google Scholar 

  • Percival JA (1983) High-grade metamorphism in the Chapleau-Foleyet area, Ontario; Amer Mineral 68:667–686

    Google Scholar 

  • Percival JA, Fountain DM (1988) Metamorphism and melting at an exposedexample of the Conrad discontinuity, Kapuskasing uplift, Canada (this volume)

    Google Scholar 

  • Percival JA, McGrath PH (1986) Deepcrustal structure and tectonichistory of the northern Kapuskasing uplift of Ontario: An integratedpetrological-geophysical study; Tectonics 5:553–572

    Article  Google Scholar 

  • Perkins D, Chipera SJ (1985) Garnet-orthopyroxene-plagioclase-quartzbarometry: Refinement and application to the English Riversubprovince and the Minnesota River Valley; Contrib Mineral Petrol 89:69–80

    Article  Google Scholar 

  • Phillips GN (1980) Water activity changes across an amphibolitegranulite transition, Broken Hill, Australia; Contrib Mineral Petrol 75:377–386

    Article  Google Scholar 

  • Raase P, Raith M, Ackermand D, Lai RK (1986) progressive metamorphism ofmafic rocks from greenschist facies to granulite facies in the Dharwar craton of South India; J Geol 94: 261–282

    Article  Google Scholar 

  • Rudnick RL, Ashwal LD, Henry DJ (1984) Fluid inclusions in high gradegneisses of the Kapuskasing structural zone, Ontario: Metamorphicfluids and uplift/erosion path; Contrib Mineral Petrol 87:399–406

    Article  Google Scholar 

  • Rudnick RL, McLennan SM, Taylor SR (1985) Large ion lithophile elementsin rocks from high-pressure granulite facies terrains; Geochim Cosmochim Acta 49:1645–1655

    Article  Google Scholar 

  • Sawyer EW, Robin PYF (1986) The subsolidus segregation of layer-parallelquartz-feldspar veins in greenschist to upper amphibolite faciesmetasediments; J Metamorphic Geol 4: 237–260

    Article  Google Scholar 

  • Schuiling RD, Kreulen R (1979) Are thermal domes heated by CO2-rich fluids from the mantle? Earth Planet Sci Lett 43: 298–302

    Article  Google Scholar 

  • Selverstone J (1982) Fluid inclusions as petrogenetic indicators ingranulite xenoliths, Pali-Aike volcanic field; Contrib Mineral Petrol 79:28–36

    Article  Google Scholar 

  • Sibson RH (1987) Earthquake rupturing as a mineralizing agent inhydrothermal systems; Geology 15:701–704

    Article  Google Scholar 

  • Todd VR, Shaw SE (1985) S-type granitoids and an I-S line in thePeninsular Ranges batholith, southern California; Geology 13:231–233

    Article  Google Scholar 

  • Touret J (1971) Le facies granulite en Norvege meridionale. II Lesinclusions fluides; Lithos 4:423–436

    Article  Google Scholar 

  • Touret J (1987) Fluid distribution in the continental lithosphere; InKroner A (ed) Proterozoic lithosphere evolution, Amer Geophys Un Geodynam Ser 17:27–33

    Article  Google Scholar 

  • Touret J, Dietvorst P (1983) Fluid inclusions in high-grade anatecticmetamorphites; J Geol Soc Lond 140:635–649

    Article  Google Scholar 

  • Taylor HP (1977) Water/rock interactions and the origin of H2O ingranitic batholiths; J Geol Soc Lond 133:509–558

    Article  Google Scholar 

  • Valley JW (1985) Polymetamorphism in the Adirondacks: Wollastonite atcontacts of shallowly intruded anorthosite; In Tobi AC, Touret J (eds) The deep Proterozoic crust in the North Atlantic provinces. Reidel, Dordrecht, 217–236

    Google Scholar 

  • Valley JW, O’Neil JR (1984) Fluid heterogeneity during granulite faciesmetamorphism in the Adirondacks: Stable isotope evidence; Contrib Mineral Petrol 85:158–173

    Article  Google Scholar 

  • Valley JW, McLelland J, Essene EJ, Lamb WM (1983) Metamorphic fluids inthe deep crust: Evidence from the Adirondacks; Nature 301:226–228

    Article  Google Scholar 

  • Weaver BL (1980) Rare earth element geochemistry of Madras granulites; Contrib Mineral Petrol 71: 271–279

    Article  Google Scholar 

  • Weaver BL, Tarney J (1983) Elemental depletion in Archaean granulitefacies rocks; In Atherton MP, Gribble, CD (eds) Migmatites, melting and metamorphism, Shiva, Nantwich, 250–263

    Google Scholar 

  • White AJR, Clemens JD, Holloway JR, Silver LT, Chappell BW, Wall VJ (1986) S-type granites and their probable absence in southwestern North America; Geology 14:115–118

    Article  Google Scholar 

  • Wickham SM (1987) The segregation and emplacement of granitic magmas; J Geol Soc Lond 144: 281–297

    Article  Google Scholar 

  • Wickham SM, Taylor HP (1985) Stable isotope evidence for large-scaleseawater infiltration in a regional metamorphic terrane: The TroisSeigneurs massif, Pyrenees, France; Contrib Mineral Petrol 91: 122–137

    Article  Google Scholar 

  • Wickham SM, Taylor HP (1987) Stable isotopic constraints on the originand depth of penetration of hydrothermal fluids associated withHercynian regional metamorphism and crustal anatexis in thePyrenees; Contrib Mineral Petrol 95: 255–268

    Article  Google Scholar 

  • Wood BJ Walther JV (1986) Fluid flow during metamorphism and itsimplications for fluid-rock ratios; In Walther JV, Wood BJ (eds) Fluid-rock interactions during metamorphism, Springer, New York, 89–108

    Google Scholar 

  • Yardley BWD, Shepperd TJ, Barber JP (1983) Fluid inclusion studies of high grade rocks from Connemara, Ireland; In Atherton MP, Gribble CD (eds) Migmatites, melting and metamorphism, Shiva, Nantwich, 110–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Percival, J.A. (1989). Melt-Induced Fluid Pumping and the Source of CO2 in Granulites. In: Bridgwater, D. (eds) Fluid Movements — Element Transport and the Composition of the Deep Crust. NATO ASI Series, vol 281. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0991-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0991-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6935-9

  • Online ISBN: 978-94-009-0991-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics