Skip to main content

Abstract

The photoacoustic effect caused by the absorption of the modulated radiation thereby leading to the generation of sound in the gas at the very same chopping frequency, has emerged as a valuable tool for a variety of applications. This is described in several excellent books and review articles on this topic [1,2,3,4,5]. The magnitude of the photoacoustic signal is directly proportional to the amount of the power absorbed by the gas and the concentration of the absorbing species. Throughout recent years frequent studies of atmospheric pollution using the photoacoustic effect in molecular gases in the infrared have been carried out with laser sources [6,7,8,9,10,11]. For a majority of gases, sub part per billion detection sensitivity limits for concentration have been reached with optimized cell designs under realistic atmospheric conditions.

Sponsored by Unilever, Vlaardingen

Partially sponsored by National Institute of Public Health and Environmental Health, Bilthoven

Sponsored by STW Foundation, Utrecht

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vargas, H. and Miranda, L.C.M. Photoacoustic and related photothermal techniques. Phys. Rep.l 161, 43–101 (1988).

    Article  Google Scholar 

  2. Hess, P. and Pelzl, J. (Eds.)Photoacoustic and Photothermal Phenomena Springer Series in Optical Sciences, Vol. 58, Springer Verlag Heidelberg (1988).

    Google Scholar 

  3. Zharov, V.P. andLethokov, V.S., Laser Optoacoustic Spectroscopy. Springer Series in Optical Sciences Vol. 37, Springer Verlag Heidelberg (1986).

    Google Scholar 

  4. Tam, A.C., Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381–431 (1986)

    Article  CAS  Google Scholar 

  5. Roth, R. et al., On the photoacoustic measurement of ammonia in the atmosphere. Proc. 4th Int. Conf. Infrared Phys. Zurich 593–595 (1988)

    Google Scholar 

  6. Sigrist, M.W., Laser generation of acoustic waves in liquids and gases. Jour, of App. Phys. 60, R83–R121 (1986).

    Article  CAS  Google Scholar 

  7. Meyer, P.L., Air pollution monitoring with a mobile CO2 laser photoacoustic system. PhD. Thesis no. 8651. Swiss Federal Institute of Technology (ETH) Zurich Switzerland (1988).

    Google Scholar 

  8. Bernegger, S., CO2 laser photoacoustic spectroscopy of gases and vapors for trace gas analysis. PhD Thesis no. 8636. Swiss Federal Institute of Technology (ETH) Zurich Switzerland (1988).

    Google Scholar 

  9. Harren, F., The photoacoustic effect, refined and applied to biological problems. Ph.D. Thesis, Faculty of Sciences, Catholic University, Nijmegen, the Netherlands (1988).

    Google Scholar 

  10. Hundelbrink, W., Die photoakustische infrarot laserspektroskopie zur schadgasanalyse. PhD Thesis. Institut fur Thermodynamik und Thermische Verfahrenstechnik der Universität Stuttgart West Germany (1986).

    Google Scholar 

  11. Artemov, V.M. et al., Photoacoustic investigation of ammonia produced by fertilized fields (in Russian). Trudi ordena Trudovogo Krasnogo Znameni Instituta Prikladnoi Geofiziki imeni akademika E.K. Fedorova, Vol. 67: Distancione sredstva i metodi izmerenia zagrzenii atmosferi i vibrosov. V.I. Rozdestvenskoi (Ed.), Hidrometeoizdata, Moscow 106–114 (1986).

    Google Scholar 

  12. Loper, G.L. et al., FY 1984, Progress toward development of a breadbord CO2 laser photoacoustic toxic monitor. Aerospace report no. ATR-85(7039)-l, The Aerospace Corporation, El Segundo, California (1985).

    Google Scholar 

  13. Dorofeev, V.S. et al., Laser optoacoustic detector for measuring the herbicides with gas chromatography (in Russian). Agrohimija 8, 116–121 (1984).

    Google Scholar 

  14. Kritchman, E. et al., Resonant optoacoustic cells for trace gas analysis. Jour. Opt. Soc. Amer. 68, 1257–1271 (1977).

    Article  Google Scholar 

  15. Bernegger, P., Swiss Federal Institute of Technology, Institute of Quantum Electronics, ETH, Zurich Switzerland. Priv. Communication (1987).

    Google Scholar 

  16. Woltering, E. et al., Laser photoacoustics: novel method for ethylene determination in plant physiological studies. To appear in Acta Hort. (1989).

    Google Scholar 

  17. Bernegger, P., et al., Longitudinal Resonant spectrophone for CO laser spectroscopy. Appl. Phys. B44, 125–133 (1988).

    Google Scholar 

  18. Miklos, A. and Lorincz, A.Windowless resonant acoustic chamber for laser photoacoustic applications.Submitted for publication in Appl. Phys. B (1988).

    Google Scholar 

  19. Worthing, C.R. (Ed.), The Pesticide Manual - A worldwide Compendium. Sixth edition, British Crop Protection Council. The Lavenham Press Ltd., Lavenham Suffolk (1979).

    Google Scholar 

  20. Andersson, P. and Persson, U., Absorption coefficients at CO2 laser wavelengths for toluene, m-xylene, o-xylene and p-xylene. Appl. Opt. 23, 192–193 (1984).

    Article  CAS  Google Scholar 

  21. Persson, U. et al., Temperature and pressure dependence of NH3 and C2H4 absorption of cross sections at CO2 laser wavelengths. Appl. Opt. 19, 1711–1715 (1980).

    Article  CAS  Google Scholar 

  22. Jalink, H. Agricultural University Wageningen, The Netherlands, Dept. of Physics and Meteorology. To be published (1989).

    Google Scholar 

  23. Bicanic, D.D. et al., The use of reverse mirage spectroscopy to determine the absorption coefficients of liquid methanol at C02 laser wavelengths.To appear in Appl. Spectr. 43, no. 1 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 ECSC, EEC, EAEC, Brussels and Luxembourg

About this paper

Cite this paper

Bicanic, D. et al. (1989). Photoacoustic Investigation of Pesticides. In: Grisar, R., Schmidtke, G., Tacke, M., Restelli, G. (eds) Monitoring of Gaseous Pollutants by Tunable Diode Lasers. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0989-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0989-2_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6934-2

  • Online ISBN: 978-94-009-0989-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics