Skip to main content

Purpose. Approach. Methodology

  • Chapter
Book cover Isodyne Stress Analysis

Part of the book series: Engineering Application of Fracture Mechanics ((EAFM,volume 8))

  • 73 Accesses

Abstract

The general aim of this work is to present a unified and consistent picture of the theory and techniques of isodynes developed hitherto in a manner consistent with the requirements of scientific approach. The manner and scope of presentation of the topic has been chosen according to the requirements of the testability of theories and procedures. This encompasses discussion and assessment of assumptions, derivations, and procedures of collecting experimental data and evaluating of results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aben, H., Krasnowski, B., and Pindera, J. T., “On Nonrectilinear Light Propagation in Integral Photoelasticity of Bodies of Revolution” (in Russian), Transactions of the Estonian Academy of Sciences 31 (1), 1982, pp. 65–73.

    Google Scholar 

  2. Aben, H., Krasnowski, B. R., and Pindera, J. T., “Nonrectilinear Light Propagation in Integrated Photoelasticity of Axisymmetric Bodies”, Transactions of the CSME 8 (4), 1984, pp. 195–200.

    Google Scholar 

  3. Brillouin, Leon, Scientific Uncertainty and Information, Academic Press, New York, 1964.

    MATH  Google Scholar 

  4. Dean, R. C., “Truth in Publication”, Trans. of the ASME, Journal of Fluid Engineering 99 (2), 1977, p. 270.

    Article  MathSciNet  Google Scholar 

  5. Ehrenreich, H., “Electronic Theory for Materials Science”, Science 235, 1987, pp. 1029–1035.

    Article  ADS  Google Scholar 

  6. Fitting, D. W. and Adler, L., Ultrasonic Spectral Analysis for Nondestructive Evaluation, Plenum Press, New York, 1981.

    Google Scholar 

  7. Gurtin, Morton E., Topics in Finite Elasticity, Society for Industrial and Applied Mathematics, Philadelphia, 1981.

    Google Scholar 

  8. Hirschfeld, “Instrumentation in the Next Decade”, Science 230, 1985, pp. 287–291.

    Article  ADS  Google Scholar 

  9. Kac, Mark, “Some Mathematical Models in Science”, Science 166, 1969, pp. 469–474.

    Article  Google Scholar 

  10. Krajewski, Wladyslaw, Correspondence Principle and Growth of Science, D. Reidel Publishing Company, Dordrecht, Holland, 1977.

    Google Scholar 

  11. Kranya, U. E., Layzan, Ya. B., Uputus, Z. T., and Tutan, M. Ya., “Mechanoluminescence at Tensile Test of Plastics” (in Russian), Mekhanika Polimerov, No. 2, 1977, pp. 316–320.

    Google Scholar 

  12. Kuhn, Thomas S., The Structure of Scientific Revolution, University of Chicago Press, Chicago, 1962, 1970.

    Google Scholar 

  13. Ladevèze, Pierre (Ed.), Local Effects in the Analysis of Structures, Elsevier, New York, 1985.

    MATH  Google Scholar 

  14. Martin, M. J. C., Managing Technological Innovation and Entrepreneurship, Reston Publishing Co., Reston (A. Prentice-Hall Co.), 1984.

    Google Scholar 

  15. Pindera, Jerzy T., “Technique of Photoelastic Studies of Plane Stress States” (in Polish), Engineering Transactions, (Rozprawy Inzynierskie), Polish Acad. Sciences 3, 1955, pp. 109–176.

    Google Scholar 

  16. Pindera, Jerzy, T., “On Application of Brittle Coatings for Determination of Regions of Plastic Deformations” (in Polish), Engineering Transactions (Rozprawy Inzynierskie), Polish Acad. Sciences 5, 1957, pp. 33–47.

    Google Scholar 

  17. Pindera, J. T. and Straka, P., “Response of the Integrated Polariscope”, J. of Stress Analysis 8, 1973, pp. 65–76.

    Article  Google Scholar 

  18. Pindera, J. T. and Sze, Y., “Response of Elastic Plates in Flat Contact”, in: J. T. Pindera et al. (Eds.), Experimental Mechanics in Research and Development, Study No. 9, Solid Mechanics Division, University of Waterloo, Ontario, Canada, 1973, pp. 617–635.

    Google Scholar 

  19. Pindera, J. T. and Straka, P., “On Physical Measures of Rheological Responses of Some Materials in Wide Ranges of Temperature and Spectral Frequency”, Rheologica Acta 13, 1974, pp. 338–351.

    Article  Google Scholar 

  20. Pindera, J. T. and Mazurkiewicz, S. B., “Photoelastic Isodynes: A New Type of Stress-Modulated Light Intensity Distribution”, Mechanics Research Communications 4, 1977, pp. 247–252.

    Article  Google Scholar 

  21. Pindera, J. T., Straka, P., and Tschinke, M. F., “Actual Thermoelastic Response of Some Engineering Materials and Its Applicability in Investigations of Dynamic Response of Structures”, VDI-Berichte 313, 1978, pp. 579–584.

    Google Scholar 

  22. Pindera, Jerzy T., “Foundations of Experimental Mechanics: Principles of Modelling, Observation and Experimentation”, in: J. T. Pindera (Ed.), New Physical Trends in Experimental Mechanics, Springer-Verlag, Wien, 1981, pp. 188–236.

    Google Scholar 

  23. Pindera, J. T., “Analytical Foundations of the Isodyne Photoelasticity”, Mechanics Research Communications 8, 1981, pp. 391–397.

    Article  MATH  Google Scholar 

  24. Pindera, J. T. and Mazurkiewicz, S. B., “Studies of Contact Problems Using Photoelastic Isodynes”, Experimental Mechanics 21, 1981, pp. 448–455.

    Article  Google Scholar 

  25. Pindera, J. T., Mazurkiewicz, S. B., and Krasnowski, B. R., “Determination of All Components of Plane Stress Field Using Simple Techniques of Differentiation of Photoelastic Isodynes”, in: Proc. 1981 Spring Meeting (Dearbon), Society for Experimental Stress Analysis, Brookfield Center, 1981, pp. 35–40.

    Google Scholar 

  26. Pindera, J. T., Issa, S. S., and Krasnowski, B. R., “Isodyne Coating in Strain Analysis”, in: Proc. 1981 Spring Meeting (Dearborn), Society for Experimental Stress Analysis, Brookfield Center, 1981, pp. 111–117.

    Google Scholar 

  27. Pindera, J. T., Krasnowski, B. R., and Pindera, M.-J., “An Analysis of Semi-Plane Stress States in Fracture Mechanics and Composite Structures Using Isodyne Photoelasticity”, in: Proc. of the 1982 Joint (JSME/SESA) Conference on Exp. Mechanics, Part 1, May 1982, Oahu-Maui, Hawaii, SESA 1982, pp. 417–421.

    Google Scholar 

  28. Pindera, J. T., Krasnowski, B. R., and Pindera, M.-J., “Determination of Interface Stresses on Composite Structures”, in: Proc. of the 1982 Joint (JSME/SESA) Conference on Exp. Mechanics, Part 1, May 1982, Oahu-Maui, Hawaii, SESA, 1982, pp. 18–22.

    Google Scholar 

  29. Pindera, J. T., Hecker, F. W., and Krasnowski, B. R., “Gradient Photoelasticity”, Mechanics Research Communications 9 (3), 1982, pp. 197–204.

    Article  Google Scholar 

  30. Pindera, J. T., “New Development in Photoelastic Studies: Isodyne and Gradient Photo-elasticity”, Optical Engineering 21 (4), 1982, pp. 197–204.

    Google Scholar 

  31. Pindera, J. T. and Krasnowski, B. R, “Determination of Stress Intensity Factors in Thin and Thick Plates Using Isodyne Photoelasticity”, in: Leonard A. Simpson (Ed.), Fracture Problems and Solutions in the Energy Industry, Pergamon Press, 1982, pp. 147–156.

    Google Scholar 

  32. Pindera, J. T. and Krasnowski, B. R., “Theory of Elastic and Photoelastic Isodynes”, SMDPaper No. 184, IEM-Paper No. 1. Solid Mechanics Division, University of Waterloo, October 1983, pp. 1–127.

    Google Scholar 

  33. Pindera, J. T. (Ed.), “Modeling Problems in Crack Tip Mechanics” (Proc. of the Tenth Canadian Fracture Conference, August 24–26, 1983, University of Waterloo), Martinus Nijhoff, The Hague, The Netherlands, 1984.

    Google Scholar 

  34. Pindera, J. T., “Isodyne Photoelasticity and Gradient Photoelasticity: Physical and Mathematical Models, Efficacy, Applications”. Mechanika Teoretyczna i Stosowana (Journal of Theoretical and Applied Mechanics), 22 (1/2), 1984, pp. 53–68.

    Google Scholar 

  35. Pindera, J. T., Krasnowski, B. R., and Pindera, M.-J., “Theory of Elastic and Photoelastic Isodynes. Samples of Applications in Composite Structures”, Experimental Mechanics 25 (3), 1985, pp. 272–281.

    Article  Google Scholar 

  36. Pindera, J. T. and Pindera, M.-J., “On the Methodologies of Stress Analysis of Composite Structures: Parts 1 and 2”, Theoretical and Applied Fracture Mechanics Journal 6(3), 1986, pp. 139–151 and 153–170.

    Article  Google Scholar 

  37. Pindera, J. T. and Hecker, F. W., “Basic Theories and Experimental Techniques of the Strain-Gradient Method”, Experimental Mechanics 27 (3), 1987, pp. 314–327.

    Article  Google Scholar 

  38. Pindera, Jerzy T., “Advanced Experimental Mechanics in Modern Engineering Science and Technology”, Transactions of the CSME, Vol. 11, No. 3, 1987, pp. 125–138.

    Google Scholar 

  39. Pindera, J. T., “Local Effects — A Major Problem of Contemporary Stress/Strength Analysis of Homogeneous and Composite Structures” (Plenary Lecture), in: G. C. Sih, S. V. Hoa, and J. T. Pindera (Eds.), Analytical and Testing Methodologies for Design with Advanced Materials (Proceedings of the International Conference on Analytical and Testing Methodologies for Design with Advanced Materials, ATMAM ‘87, Concordia University, Montreal, August 26–28, 1987), North Holland, Amsterdam, 1988, pp. 29–55.

    Google Scholar 

  40. Popper, Karl R., The Logic of Scientific Discovery, Harper and Row, New York, 1959, 1968.

    MATH  Google Scholar 

  41. Robinson, A. L., “Physicists Try to Find Order in Chaos”, Science 218, 1982, pp. 554–556.

    Article  ADS  Google Scholar 

  42. Sedov, L. I., “On Prospective Trends and Problems in Mechanics of Continuous Media” (in Russian), Prikladnaya Matematika i Mekhanika 40, 1976, pp. 963–980. English translation, Pergamon Press, 1977.

    MathSciNet  Google Scholar 

  43. Sih, G. C., “The State of Affairs Near the Crack Tip”, in: Jerzy T. Pindera (Ed.), Modelling Problems in Crack Tip Mechanics, Martinus Nijhoff Publishers, Dordrecht, 1984, pp. 65–90.

    Google Scholar 

  44. Sih, G. C., “Mechanics and Physics of Energy Density Theory”, Theoretical and Applied Fracture Mechanics 4 (3), 1985, pp. 157–173.

    Article  MathSciNet  Google Scholar 

  45. Starr, Ch. and Whippie, Ch., “Risk of Risk Decision”, Science 8, 1980, pp. 1114–1119.

    Article  ADS  Google Scholar 

  46. Thum, A., Petersen, C., and Svenson, O., Verformung, Spannung und Kerbwirkung (Deformation, Stress and Notch Action), VDI-Verlag, Dusseldorf, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 J. T. Pindera and Sons Engineering Services, Ontario, Canada

About this chapter

Cite this chapter

Pindera, J.T., Pindera, MJ. (1989). Purpose. Approach. Methodology. In: Isodyne Stress Analysis. Engineering Application of Fracture Mechanics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0973-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0973-1_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6927-4

  • Online ISBN: 978-94-009-0973-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics