Skip to main content

Binary vectors

  • Chapter

Abstract

Agrobacterium tumefaciens is capable of transferring a defined piece of DNA (T-DNA) containing tumorigenic loci from its tumor-inducing (Ti) plasmid into the genome of a large number of gymnosperms and angiosperms [1–3]. This process requires the cis acting T-DNA border sequences [4–6] and the trans acting virulence (vir) functions encoded by the Ti plasmid and the Agrobacterium chromosome [7–10]. The transfer process is fully active when the vir functions and the T-DNA are located on separate compatible replicons in Agrobacterium [11]. These features made the development of binary vectors possible [12–15]. In such systems, the Agrobacterium host strain contains a wild-type Ti plasmid or disarmed (tumor genes deleted) Ti plasmid that carries the vir functions and serves a a helper. The T-DNA borders are located on a compatible replicón that will function in both E. coli and Agrobacterium. DNA that is inserted between the T-DNA borders will be efficiently transferred to and stably maintained within the plant genome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271.

    Article  PubMed  CAS  Google Scholar 

  2. Chilton MD, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA of crown gall tumor cells. Proc Natl Acad Sci USA 77:4060–4064.

    Article  PubMed  CAS  Google Scholar 

  3. Willmitzer L, De Beuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature 287:359–361.

    Article  CAS  Google Scholar 

  4. Shaw CH, Watson MD, Carter GH, Shaw CH (1984) The right hand copy of the nopaline Ti-plasmid 25bp repeat is required for tumor formation. Nucleic Acids Res 12:6031–6041.

    Article  PubMed  CAS  Google Scholar 

  5. Wang K, Herrera-Estrella L, Van Montagu M, Zambryski P (1984) Right 25bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38:455–462.

    Article  PubMed  CAS  Google Scholar 

  6. Peralta EG, Hellmiss R, Ream LW (1986) Overdrive, a T-DNA transmission enhancer on the A. tumefaciens Ti plasmid. EMBO J 5:1137–1142.

    PubMed  CAS  Google Scholar 

  7. Lundquist RC, Close TJ, Kado CI (1984) Genetic complementation of Agrobacterium tumefaciens Ti plasmid mutants in the virulence region. Mol Gen Genet 193:1–7.

    Article  PubMed  CAS  Google Scholar 

  8. Stachel S, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of A. tumefaciens. EMBO J 5:1445–1454.

    PubMed  CAS  Google Scholar 

  9. Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bact 144:732–743.

    PubMed  Google Scholar 

  10. Douglas CJ, Staneloni RJ, Rubin RA, Nester EW (1985) Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J Bact 161:850–860.

    PubMed  CAS  Google Scholar 

  11. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of the vir- and T-region of A. tumefaciens Ti plasmid. Nature 303:179–180.

    Article  CAS  Google Scholar 

  12. An G, Watson BD, Stachel S, Gordon MP, Nester EW (1985) New cloning vehicles for transformation of higher plants. EMBO J 4:277–288.

    PubMed  CAS  Google Scholar 

  13. Bevan MW (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721.

    Article  PubMed  CAS  Google Scholar 

  14. Hoekema A, Van Haaren MJJ, Fellinger AJ, Hooykaas PJJ, Schilperoort RA (1985) Nononcogenic plant vectors for use in the Agrobacterium binary system. Plant Mol Biol 5:85–89.

    Article  CAS  Google Scholar 

  15. Klee HJ, Yanosky MF, Nester EW (1985) Vectors for transformation of higher plants. Bio/Technology 3:637–642.

    Article  CAS  Google Scholar 

  16. Freeman JP, Draper J, Davey MR, Cocking EC, Gartland KMA, Harding K, Pental D (1984) A comparison of methods for plasmid delivery into plant protoplasts. Plant Cell Physiol 25:1353–1365.

    CAS  Google Scholar 

  17. Fromm ME, Taylor LP, Walbot V (1985) Expression of genes electroporated into monocot and dicot plant cells. Proc Natl Acad Sci USA 82:5824–5828.

    Article  PubMed  CAS  Google Scholar 

  18. Shillito RD, Saul MW, Paszkowski J, Muller M, Potrykus I (1985) High efficiency direct gene transfer to plants. Bio/Technology 3:1099–1103.

    Article  Google Scholar 

  19. An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570.

    Article  PubMed  CAS  Google Scholar 

  20. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231.

    Article  CAS  Google Scholar 

  21. Krens FA, Mans RMW, Van Slogteren TMS, Hoge JHC, Wullems GJ, Schilperoort RA (1985) Structure and expression of DNA transferred to tobacco via transformation of protoplasts with Ti plasmid DNA: co-transfer of T-DNA and non-T-DNA sequences. Plant Mol Biol 5:223–234.

    Article  CAS  Google Scholar 

  22. Czernilofsky AP, Hain R, Herrera-Estrella L, Lorz H, Goyvaerts E, Baker BJ, Schell J (1986) Fate of selectable marker DNA integrated into the genome of Nicotiana tabacum. DNA 5:101–113.

    Article  PubMed  CAS  Google Scholar 

  23. Wallroth M, Gerats AGM, Rogers SG, Fraley RT, Horsch RB (1986) Chromosomal localization of foreign genes in Petunia hybrida. Mol Gen Genet 202:6–15.

    Article  CAS  Google Scholar 

  24. Chyi Y-S, Jorgensen RA, Goldstein D, Tanksley SD, Loaeza-Figueroa F (1986) Location and stability of Agrobacterium mediated T-DNA insertion in the Lycopersicon genome. Mol Gen Genet 204:64–69.

    Article  CAS  Google Scholar 

  25. An G, Watson BD, Chiang CC (1986) Transformation of tobacco, tomato, potato and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305.

    Article  PubMed  CAS  Google Scholar 

  26. De Cleene M, De Ley J (1976) The host range of Crown Gall. Bot Rev 42:389–466.

    Article  Google Scholar 

  27. De Cleene M (1985) The susceptibility of monocotyledons to Agrobacterium tumefaciens. Phytopath Z 113:81–89.

    Article  Google Scholar 

  28. Graves ACF, Goldman SL (1986) The transformation of Zea mays seedlings with A. tumefaciens. Plant Mol Biol 7:43–50.

    Article  CAS  Google Scholar 

  29. Montoya AL, Chilton M-D, Gordon MP, Sciaky D, Nester EW (1977) Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumors. J Bact 129:101–107.

    PubMed  CAS  Google Scholar 

  30. Panagopoulos CG, Psallidas PG (1973) Characteristics of Greek isolates of Agrobacterium tumefaciens. J Appl Bact 36:233–240.

    CAS  Google Scholar 

  31. Anderson AR, Moore L (1979) Host specificity of the genus Agrobacterium. Phytopathology 69:320–324.

    Article  Google Scholar 

  32. Schmidhauser TJ, Helinski DR (1985) Regions of broad-host-range plasmid RK2 involved in replication and stable maintenance in nine species of gram-negative bacteria. J Bact 164:446–455.

    PubMed  CAS  Google Scholar 

  33. Yadav NS, Vanderleyden J, Bennett DR, Barnes WM, Chilton M-D (1982) Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79:6322–6326.

    Article  PubMed  CAS  Google Scholar 

  34. Jen GC, Chilton M-D (1986) The right border region of pTiT37 T-DNA is intrinsically more active than the left border region in promoting T-DNA transformation. Proc Natl Acad Sci US A 83:3895–3899.

    Article  CAS  Google Scholar 

  35. An G (in press) Binary Ti vectors for plant transformation and promoter analysis. Methods Enzymol.

    Google Scholar 

  36. An G, Ebert PR, Yi B-Y, Choi C-H (1986) Both TATA box and upstream regions are required for the nopaline synthase promoter activity in transformed tobacco cells. Mol Gen Genet 203:245–250.

    Article  CAS  Google Scholar 

  37. An G (1986) Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol 81:86–91.

    Article  PubMed  CAS  Google Scholar 

  38. Odell JT, Nagy C, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812.

    Article  PubMed  CAS  Google Scholar 

  39. Green PJ, Pines O, Inouye M (1986) The role of antisense RNA in gene regulation. Ann Rev Biochem 55:569–597.

    Article  PubMed  CAS  Google Scholar 

  40. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  41. Evans DA, Sharp WR, Ammirato PV, Yamata Y (1983) Handbook of Plant Cell Culture, Vol. 1. New York: Macmillan Publishing Co.

    Google Scholar 

  42. Holsters M, de Waele D, Depicker A, Messens E, Van Montagu M, Schell J (1978) Transfection and transformation of A. tumefaciens. Mol Gen Genet 163:181–187.

    Article  PubMed  CAS  Google Scholar 

  43. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range cloning system for gram negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351.

    Article  PubMed  CAS  Google Scholar 

  44. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523.

    Article  PubMed  Google Scholar 

  45. Marton L, Wullems G, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277:129–131.

    Article  Google Scholar 

  46. Marks DM, Feldmann KA (1986) Transformation of Arabidopsis by a method that does not require tissue cultures: analysis of progeny. Fallen Leaf Lake Conference, abstract.

    Google Scholar 

  47. Pollock K, Barfield DG, Robinson SJ, Shields R (1985) Transformation of protoplast derived cell colonies and suspension cultured cells by A. tumefaciens. Plant Cell Rep 4:202–205.

    Article  CAS  Google Scholar 

  48. Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

An, G., Ebert, P.R., Mitra, A., Ha, S.B. (1989). Binary vectors. In: Gelvin, S.B., Schilperoort, R.A., Verma, D.P.S. (eds) Plant Molecular Biology Manual. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0951-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0951-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6918-2

  • Online ISBN: 978-94-009-0951-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics