Skip to main content

Effect of crosslink type on the fracture of natural rubber vulcanizates

  • Chapter
  • 140 Accesses

Abstract

The effect of the chemical nature of the crosslinks on the fatigue crack growth behavior of filled natural rubber has been investigated. By varying the ratio of sulfur to accelerator, the relative amounts of polysulfidic to monosulfidic crosslinks was controlled. Carbon-carbon crosslinking was introduced via peroxide cure. All elastomers tested were prepared at the same number average crosslink density as confirmed by equilibrium swelling and modulus measurements. At the same crosslink density, polysulfidic crosslinks were most resistant to fatigue over the range of tearing energies investigated. Vulcanizates with primarily monosulfidic crosslinks exhibited lower cut growth rates than peroxide cured specimens, although the monosulfidic network strength may have been enhanced by the presence of some polysulfidic crosslinks.

Résumé

On a étudie l’effet de la nature chimique des liaisons dans le caoutchouc naturel sur son comportement à la propagation des fissures de fatigue. On contrôle la quantité relative de liaisons polysulfurées par rapport aux liaisons monosulfurées en faisant varier le rapport soufre-accélérateur de réaction. Par une vulcanisation sous peroxyde, on peut introduire des liaisons C-C. Tous les élastomères soumis à essais ont été préparés une même valeur moyenne de densité de liaisons, ce qui est confirmé par le gonflement à l’équilibre et par des mesures de module. A même densité de liaison, les liaisons polysulfurées se révèlent les plus résistantes en fatigue, sur la gamme des énergies d’arrachement étudiée. Des composants vulcanisés à liaisons principalement monosulfuruees ont montré des vitesses de croissance d’une entaille plus faibles que des éprouvettes vulcanisées sous peroxyde, bien que la résistance du réseau mono-sulfuré puisse avoir été accrue par la présence de quelques liaisons polysulfurées.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.J. Lake and A.G. Thomas, Proceedings Royal Society (London) A300 (1967) 108.

    Article  ADS  Google Scholar 

  2. A.K. Bhowmick, A.N. Gent and C.T.R. Pulford, Rubber Chemistry and Technology 56 (1983) 226.

    Article  Google Scholar 

  3. M.J. Wang and F.N. Kelley, unpublished report (1986).

    Google Scholar 

  4. C.M. Kok and V.H. Yee, European Polymer Journal 22 (1986) 341.

    Article  Google Scholar 

  5. L.C. Bateman et al. in The Chemistry and Physics of Rubber-Like Substances, John Wiley and Sons, New York (1963) 715.

    Google Scholar 

  6. J. Lai, Rubber Chemistry and Technology 43 (1970) 664.

    Article  Google Scholar 

  7. H.W. Greensmith et al., in The Chemistry and Physics of Rubber-Like Substances, John Wiley and Sons, New York (1963) 249.

    Google Scholar 

  8. L.C. Yanyo and F.N. Kelley, Rubber Chemistry and Technology 60 (1987) 78.

    Article  Google Scholar 

  9. J.A. Brydson, Rubber Chemistry, Applied Sciences, London (1978).

    Google Scholar 

  10. D.S. Pearson and G.G.A. Bohm, Rubber Chemistry and Technology 45 (1972) 193.

    Article  Google Scholar 

  11. R.F. Fedors and R.F. Landel, Transactions Society of Rheology 9.1 (1965) 195.

    Article  Google Scholar 

  12. A.A. Griffith, Philosophical Transactions Royal Society (London) A221 (1921) 163.

    Article  ADS  Google Scholar 

  13. A.A. Griffith, Proceedings International Congress of Applied Mechanics (1924) 55.

    Google Scholar 

  14. R.S. Rivlin and A.G. Thomas, Journal of Polymer Science 10 (1953) 291.

    Article  ADS  Google Scholar 

  15. P.B. Lindley and S.C. Teo, Plastics and Rubber: Materials and Applications (1979) 29.

    Google Scholar 

  16. G.J. Lake and P.B. Lindley, in Physical Basis of Yield and Fracture: Conference Proceedings, The Institute of Physics and The Physical Society (1966) 176.

    Google Scholar 

  17. A.N. Gent, P.B. Lindley, and A.G. Thomas, Journal of Applied Polymer Science 8 (1964) 455.

    Article  Google Scholar 

  18. A. Stevenson, Rubber Chemistry and Technology 59 (1986) 208.

    Article  Google Scholar 

  19. A. Ahagon, A.N. Gent, H.J. Kim and Y. Kumagai, Rubber Chemistry and Technology 48 (1975) 896.

    Article  Google Scholar 

  20. E.H. Andrews, Journal of the Mechanics and Physics of Solids 11 (1963) 231.

    Article  ADS  Google Scholar 

  21. G.J. Lake and P.B. Lindley, Journal of Applied Polymer Science 9 (1965) 1233.

    Article  Google Scholar 

  22. G.J. Lake and P.B. Lindley, Journal of Applied Polymer Science 10 (1966) 343.

    Article  Google Scholar 

  23. P.B. Lindley, International Journal of Fracture 9 (1973) 449–462.

    Google Scholar 

  24. A.N. Gent and R.H. Tobias, Journal of Polymer Science: Polymer Physics Edition 20 (1982) 2051.

    Article  ADS  Google Scholar 

  25. L.C. Yanyo and F.N. Kelley, Rubber Chemistry and Technology 60 (1987) 78.

    Article  Google Scholar 

  26. G.J. Lake and P.B. Lindley, Journal of Applied Polymer Science 8 (1964) 707.

    Article  Google Scholar 

  27. A.R. Payne and R.E. Whittaker, Journal of Applied Polymer Science 15 (1971) 1941.

    Article  Google Scholar 

  28. P.J. Flory, in Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY (1953) 579.

    Google Scholar 

  29. G. Kraus, Rubber World 135 (1956) 67.

    Google Scholar 

  30. B. Saville and A.A. Watson, Rubber Chemistry and Technology 40 (1967) 100.

    Article  Google Scholar 

  31. M.L. Studebaker and L.G. Nabor, Rubber Chemistry and Technology 40 (1967) 100.

    Article  Google Scholar 

  32. M.L. Studebaker and L.G. Nabor, in Proceedings International Rubber Conference, Washington (1959) 237.

    Google Scholar 

  33. A.Y. Coran, Rubber Chemistry and Technology 37 (1964) 668.

    Article  Google Scholar 

  34. J.E. Mark and M.Y. Tang, Journal of Polymer Science: Polymer Physics Edition 22 (1984) 1849.

    Article  ADS  Google Scholar 

  35. J.E. Mark, Polymer Journal 17 (1985) 265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

Yanyo, L.C. (1989). Effect of crosslink type on the fracture of natural rubber vulcanizates. In: Folias, E.S. (eds) Structural Integrity. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0927-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0927-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6906-9

  • Online ISBN: 978-94-009-0927-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics