Skip to main content

Time-dependent autohesion

  • Chapter
  • 129 Accesses

Abstract

A study has been conducted to investigate the relationship between polymeric structure and time-dependent autohesion, measured in terms of autohesive fracture energy, G a. Using the method of reduced variables, it was found that G a data as a function of contact time and temperature could be superposed into master curves of temperature-reduced contact times. Autohesion master curves developed in this fashion showed fracture resistance increasing with time along a logarithmic-type curve with monotonically decreasing slope. These data indicate that the generally accepted 1/2 power law dependency for autohesion only applies over a narrow range of contact times. Modelling of the experimental results was accomplished using a first-order kinetic equation derived to account for contact-area formation. Two diffusion-based models also provided good predictions in specific cases, most notably for the effect of molecular weight on time to equilibrium. However, evidence that diffusion is not the rate controlling process included the pronounced effects of contact pressure on autohesion and the identical time- dependent behavior of nondiffusing crosslinked networks when compared with systems containing mobile polymeric chains.

Résumé

On a mené une étude sur la relation liant la structure d’un polymere et de l’auto-adhésion dépendant du temps, mesurée en termes de l’énergie de rupture d’auto-adhésion Ga. En utilisant la méthode des réduites, on trouve que les donées relatives à Ga exprimées en fonction de la durée du contact et de la température, peuvent être superposées à des courbes directrices liant la température et les durées de contact réduites. Les courbes directrices d’auto-adhésion développées par cette voie montrent que la résistance à la rupture augmente avec le temps selon loi de type logarithmique, avec une pente à décroissance régulière. Ces données indiquent que la loi de puissance 1/2 qui est généralement acceptée pour l’auto-adhésion ne s’applique que sur une plage de durées de contact relativement étroite. Pour tenir compte de la formation de surfaces de contact, on a accompli une modélisation des données expérimentales en utilisant une équation cinétique du premier ordre. Deux modèles basés sur la diffusion fournissent également de bonne prédictions pour des cas spécifiques, et plus particulièrement pour traiter le problème de l’effet du poids moléculaire sur la durée pour atteindre un équilibre. Toutefois, il est évident que la diffusion n’est pas le processus contrôlant la vitesse. Ceci transparaît par les effets prononcés de la pression de contact sur l’auto-adhésion, et sur le comportement identique par rapport au temps de réseaux à liaison crousées non sujets à la diffusion et de systèmes comportant des chaînes polymères multiples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.S. Voyutskii, Autohesion and Adhesion of High Polymers, Interscience, New York (1963).

    Google Scholar 

  2. G.R. Hamed, Rubber Chemistry and Technology 54 (1981) 576–595.

    Article  Google Scholar 

  3. S. Wu, Polymer Interface and Adhesion, Dekker, New York (1982).

    Google Scholar 

  4. S.S. Voyutskii and B.V. Shtarkh, Rubber Chemistry and Technology 30 (1957) 548–553.

    Article  Google Scholar 

  5. W.G. Forbes and L.A. McLeod, Transactions of the Institute of the Rubber Industry 34 (1958) 154–184.

    Google Scholar 

  6. K. Jud, H.H. Kausch and J.G. Williams, Journal of Material Science 16 (1981) 204–214.

    Article  ADS  Google Scholar 

  7. R.P. Wool and K.M. O’Connor, Journal of Applied Physics 52 (1981) 5953–5963.

    Article  ADS  Google Scholar 

  8. R.P. Wool and K.M. O’Connor, Journal of Polymer Science: Polymer Letters Edition 20 (1982) 7–16.

    Article  ADS  Google Scholar 

  9. T.Q. Nguyen, H.H. Kausch, H. Jud and M. Dettenmaier, Polymer 23 (1982) 1305–1321.

    Article  Google Scholar 

  10. R.P. Wool, Rubber Chemistry and Technology 57 (1984) 307–319.

    Article  Google Scholar 

  11. H.H. Kausch, D. Petrovska, R.F. Landel and L. Monnerie, Polymer Science and Engineering 27 (1987) 149–154.

    Article  Google Scholar 

  12. S.S. Voyutskii, Rubber Chemistry and Technology 33 (1960) 748–755.

    Article  Google Scholar 

  13. S.S. Voyutskii and V.L. Vakula, Journal of Applied Polymer Science 1 (1963) 475–491.

    Article  Google Scholar 

  14. P.G. de Gennes, Comptes Readu Academy of Sciences (Paris), Series B, 291 (1980) 219–223.

    Google Scholar 

  15. P.G. de Gennes, Journal of Chemical Physics 55 (1971) 572–579.

    Article  ADS  Google Scholar 

  16. S. Prager and M. Tirrell, Journal of Chemical Physics 75 (1981) 5194–5198.

    Article  ADS  Google Scholar 

  17. S. Prager, D. Adolf and M. Tirrell, Journal of Chemical Physics 78 (1983) 7015–7016.

    Article  ADS  Google Scholar 

  18. D. Adolf, M. Tirrell and S. Prager, Journal of Polymer Science: Polymer Physics Edition 23 (1985) 413–427.

    Article  ADS  Google Scholar 

  19. Y.H. Kim and R.P. Wool, Macromolecules 16 (1983) 1115–1120.

    Article  ADS  Google Scholar 

  20. F.N. Kelley, PhD dissertation, University of Akron (1961).

    Google Scholar 

  21. D.H. Kaelble, in Treatise on Adhesion and Adhesives, R.L. Patrick (ed.), Dekker, New York (1967).

    Google Scholar 

  22. D.H. Kaelble, Journal of Adhesion 1 (1969) 102–123.

    Article  Google Scholar 

  23. D.H. Kaeble, Journal of Macromolecular Science — Reviews in Macromolecular Chemistry C6 (1971) 85–112.

    Google Scholar 

  24. J.N. Anand, Journal of Adhesion 5 (1973) 265–275.

    Article  Google Scholar 

  25. G.R. Hamed, Rubber Chemistry and Technology 54 (1981) 403–414.

    Article  Google Scholar 

  26. G.R. Hamed, Rubber Chemistry and Technology 55 (1982) 1469–1481.

    Article  Google Scholar 

  27. N.S. Korenevskaya, V.V. Laurent’ev, S.M. Yagnyatinskaya, V.G. Rayevskii and S.S. Voyutskii, Polymer Science USSR 8 (1966) 1372–1377.

    Article  Google Scholar 

  28. J.D. Ferry, Viscoelastic Properties of Polymers, Third Edition, Wiley, New York (1980).

    Google Scholar 

  29. R.W. Fillers and N.M. Tschoegl, Transactions of the Society of Rheology 21 (1977) 51–100.

    Article  Google Scholar 

  30. W.K. Moonan and N.W. Tschoegl, Macromolecules 16 (1983) 55–59.

    Article  ADS  Google Scholar 

  31. W.K. Moonan and N.W. Tschoegl, Journal of Polymer Science: Polymer Physics Edition 23 (1985) 623–651.

    Article  ADS  Google Scholar 

  32. E.A. Meinecke, Rubber Chemistry and Technology 53 (1980) 1145–1159.

    Article  Google Scholar 

  33. R.S. Rivlin and A.G. Thomas, Journal of Polymer Science 10 (1953) 291–318.

    Article  ADS  Google Scholar 

  34. A.N. Gent and A.J. Kinloch, Journal of Polymer Science: Polymer Physics Edition 9 (1971) 659–668.

    ADS  Google Scholar 

  35. A.N. Gent, Rubber Chemistry and Technology 47 (1974) 202–212.

    Article  Google Scholar 

  36. E.H. Andrews and A.J. Kinloch, Proceedings of the Royal Society London A332 (1973) 385–399.

    Article  ADS  Google Scholar 

  37. E.H. Andrews and A.J. Kinloch, Proceedings of the Royal Society London A332 (1973) 401–414.

    Article  ADS  Google Scholar 

  38. R.G. Stacer, D.M. Husband, and H.L. Stacer, Rubber Chemistry and Technology 60 (1987) 227–244.

    Article  Google Scholar 

  39. M.L. Williams, R.F. Landel and J.D. Ferry, Journal of the American Chemical Society 11 (1955) 3701–3706.

    Article  Google Scholar 

  40. P.J. Flory, Statistical Mechanics of Chain Molecules, Wiley, New York (1969).

    Google Scholar 

  41. M. Tirrell, Rubber Chemistry and Technology 57 (1984) 523–556.

    Article  Google Scholar 

  42. D.S. Pearson, Rubber Chemistry and Technology 60 (1987) 439–496.

    Article  Google Scholar 

  43. L.F. Plisko, V.V. Laurentyev, V.L. Vakula, and S.S. Voyutskii, Polymer Science USSR 14 (1972) 2501–2506.

    Article  Google Scholar 

  44. R.M. Vasenin, Adhesives Age 8 (1965) 18–29.

    Google Scholar 

  45. J.N. Anand and R.Z. Balwinski, Journal of Adhesion 1 (1969) 24–30.

    Article  Google Scholar 

  46. J.N. Anand and L. Dipsinski, Journal of Adhesion 2 (1970) 16–22.

    Article  Google Scholar 

  47. R.P. Campion, Journal of Adhesion 1 (1974) 1–23.

    Google Scholar 

  48. A.Ya. Malkin, in Experimental Methods of Polymer Physics, A.Ya. Malkin (ed.), Prentice-Hall, Englewood Cliffs, New Jersey (1983).

    Google Scholar 

  49. F. Bueche, Physical Properties of Polymer, Wiley, New York (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Dordrecht

About this chapter

Cite this chapter

Stacer, R.G., Schreuder-Stacer, H.L. (1989). Time-dependent autohesion. In: Folias, E.S. (eds) Structural Integrity. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0927-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0927-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6906-9

  • Online ISBN: 978-94-009-0927-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics