Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 164))

Abstract

Atomic diffusion processes in semiconductors play an important role in the fabrication of electronic devices in various areas. These areas include:

  1. (i)

    diffusion of electrically active dopants for the formation of n- or p-doped regions in the semiconductor material as schematically indicated in Fig. 1 for the case of ion-implanted dopants as a source for a subsequent diffusion step at elevated temperatures,

  2. (ii)

    diffusion of electrically active contaminants which decrease the minority carrier lifetime and should therefore be avoided or induced to diffuse and precipitate at appropriate gettering sites,

  3. (iii)

    diffusion of elements used for defect engineering such as oxygen or carbon in silicon for intrinsic gettering purposes or of hydrogen for passivating undesirable electrically active defects, and

  4. (iv)

    diffusion of intrinsic point defects such as vacancies and self-interstitials which determine self-diffusion as well as other phenomena related to material transport processes, as, e.g., the growth or shrinkage of dislocation loops, which may be induced by certain processing steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. Grove, Physics and Technology of Semiconductor Devices, John Wiley & Sons, New York (1967), Chapt. 3.

    Google Scholar 

  2. A. Seeger and C. P. Chik, Phys. Status Solidi 29, 455 (1968).

    Article  CAS  Google Scholar 

  3. Atomic Diffusion in Semiconductors D. Shaw, Ed., Plenum, New York (1973).

    Google Scholar 

  4. R. B. Fair, Impurity Doping Processes in Silicon F. F. Y. Wang, Ed., North-Holland, New York (1981), p. 315.

    Google Scholar 

  5. J. C. C. Tsai, VLSI Technology S. M. Sze, Ed., McGraw-Hill, New York (1983), p. 169.

    Google Scholar 

  6. S. K. Ghandi, VLSI Fabrication Principles John Wiley & Sons, New York (1983), Chapt. 4.

    Google Scholar 

  7. D. A. Antoniadis, Process and Device Simulation for MOS-VLSI Circuits P. Antognetti, D. A. Antoniadis, R. W. Dutton, and W. G. Oldham, Eds., Martinus Nijhoff, Boston (1983), p. 1.

    Google Scholar 

  8. W. Langheinrich, Landolt-Börnstein Vol. III, 17d, O. Madelung, M. Schultz, and H. Weiss, Eds., Springer-Verlag, New York (1984), p. 118.

    Google Scholar 

  9. W. Frank, U. Gösele, H. Mehrer, and A. Seeger, Diffusion in Crystalline Solids G. E. Murch and A. S. Nowick, Eds., Academic Press, New York (1984), p. 64.

    Google Scholar 

  10. H. Jacob and G. Müller, Landolt-Börnstein Vol. III 17d, O. Madelung, M. Schultz, and H. Weiss, Eds., Springer-Verlag, New York (1984), p. 12.

    Google Scholar 

  11. S. M. Sze, Semiconductor Devices, Physics and Technology John Wiley & Sons, New York (1985), Chapt. 10.

    Google Scholar 

  12. A. F. W. Willoughby, Defects in Semiconductors S. Mahajan and J. W. Corbett, Eds., North-Holland, New York (1983), p. 237.

    Google Scholar 

  13. U. Gösele, Advances in Solid State Physics Vol. XXVI, Vieweg, Braunschweig (1986). [14] See other articles in reference [7].

    Google Scholar 

  14. Ch. P. Ho, J. D. Plummer, S. E. Hansen, and R. W. Dutton, IEEE Trans. Electron Devices ED-30 1438 (1983).

    Article  CAS  Google Scholar 

  15. W. Fichtner, Applied Solid State Science Supplement 2, Part C, D. Kahng, Ed., Academic Press, New York (1985), p. 119.

    Google Scholar 

  16. D. A. Antoniadis, VLSI Electronics Vol. 12, N. G. Einspruch and H. Huff, Eds., Academic Press, New York (1985), p. 271.

    Google Scholar 

  17. L. R. Weisberg and J. Blanc, Phys. Rev. 131 154 (1963).

    Article  Google Scholar 

  18. F. A. Kröger, The Chemistry of Imperfect Crystals North-Holland, Amsterdam (1973/1974).

    Google Scholar 

  19. T. Y. Tan and U. Gösele, Appl. Phys. A37 1 (1985).

    CAS  Google Scholar 

  20. F. C. Frank and D. Turnbull, Phys. Rev. 104 617 (1956).

    Article  CAS  Google Scholar 

  21. R. L. Longini, Solid State Electron. 5, 127 (1962).

    Article  CAS  Google Scholar 

  22. U. Gösele, W. Frank, and A. Seeger, Appl. Phys. 23, 361 (1980).

    Article  Google Scholar 

  23. D. Weiler and H. Mehrer, Philos. Mag. A49 309 (1983), and references therein.

    Google Scholar 

  24. For references, see: B. K. Celler and T. E. Seidel, Applied Solid State Science Supplement 2, Part C, D. Kahng, Ed., Academic Press, New York (1985), p. 2.

    Google Scholar 

  25. See Chapt. 11 in this volume.

    Google Scholar 

  26. H. Schaber, R. V. Criegern, and I. Weitzel, J. Appl. Phys. 58, 4036 (1985), and references therein.

    Article  CAS  Google Scholar 

  27. R. F. Peart, Phys. Status Solidi 15, K119 (1966).

    Article  CAS  Google Scholar 

  28. J. Hirvonen and A. Antilla, Appl. Phys. Lett. 35, 703 (1979).

    Article  CAS  Google Scholar 

  29. J. M. Fairfield and B. J. Masters, J. Appl. Phys. 38, 3148 (1967).

    Article  CAS  Google Scholar 

  30. H. J. Mayer, H. Mehrer, and K. Maier, Inst. Phys. Conf. Ser. 31 186 (1977).

    Google Scholar 

  31. L. Kalinowski and R. Seguin, Appl. Phys. Lett. 35, 703 (1980).

    Google Scholar 

  32. R. N. Ghoshtagore, Phys. Rev. Lett. 16, 890 (1966).

    Article  Google Scholar 

  33. F. J. Demond, S. Kalbitzer, H. Mannsberger, and H. Damjantschitsch, Phys. Lett. A93 503 (1983).

    Google Scholar 

  34. U. Gösele and T. Y. Tan, Defects in Semiconductors S. Mahajan and J. W. Corbett, Eds., North-Holand, New York (1983), p. 45.

    Google Scholar 

  35. W. R. Wilcox and T. J. LaChapelle, J. Appl. Phys. 35 240 (1964).

    Article  CAS  Google Scholar 

  36. W. R. Wilcox, T. J. LaChapelle, and D. H. Forbes, J. Electrochem. Soc. 111 1377 (1964).

    Article  CAS  Google Scholar 

  37. N. A. Stolwijk, J. Hölzl, E. R. Weber, H. Mehrer, and W. Frank, Physica B115 335 (1985).

    Google Scholar 

  38. F. Morehead, N. Stolwijk, W. Meyberg, and U. Gösele, Appl. Phys. Lett. 42, 690 (1983).

    Article  CAS  Google Scholar 

  39. H. Kitagawa, K. Hashimoto, and M. Yoshida, Jpn. J. Appl. Phys. 12 276 (1982).

    Article  Google Scholar 

  40. S. Mantovani, F. Nava, C. Nobili, and G. Ottaviani, Phys. Rev. B33 5536 (1986).

    Google Scholar 

  41. N. A. Stolwijk, B. Schuster, and J. Hölzl, Appl. Phys. A33 133 (1984).

    CAS  Google Scholar 

  42. K. Taniguchi, D. A. Antoniadis, and Y. Matsushita, Appl. Phys. Lett. 42, 961 (1983).

    Article  CAS  Google Scholar 

  43. G. B. Bronner and J. D. Plummer, Stanford Report TRDXG501–84, Palo Alto, California (1984).

    Google Scholar 

  44. R. B. Griffin, P. M. Fahey, J. D. Plummer, and R. W. Dutton, Appl. Phys. Lett. 47, 319 (1985).

    Article  CAS  Google Scholar 

  45. S. T. Pantelides, A. Oshiyama, R. Car, and P. J. Kelly, Phys. Rev. B30 2260 (1984).

    Google Scholar 

  46. Y. Bar-Yam and J. D. Joannopoulos, Proc. 13th Int. Conf. on Defects in Semiconductors L. C. Kimerling and J. M. Parsey, Jr., Eds., The Metallurgical Society, Warrendale, Pennsylvania (1985), p. 261.

    Google Scholar 

  47. For a review on the properties of gold in silicon, see: W. M. Bullis, Solid State Electron. 9, 143 (1966).

    Google Scholar 

  48. D. Lecrosnier, J. Paugam, G. Pelous, F. Richou, and M. Salvi, J. Appl. Phys. 52 5090 (1981).

    Article  CAS  Google Scholar 

  49. W. F. Tseng, R. Koji, J. W. Mayer, and T. E. Seidel, Appl. Phys. Lett. 33 442 (1978).

    Article  CAS  Google Scholar 

  50. D. Jaworska, J. Sielanko, and E. Jaworska, Appl. Phys. A35 119 (1984).

    CAS  Google Scholar 

  51. G. B. Bronner and J. D. Plummer, Impurity Diffusion and Gettering in Silicon R. B. Fair, C. W. Pearce, and J. Washburn, Eds., Materials Research Society, Pittsburgh, Pennsylvania (1985), p. 49.

    Google Scholar 

  52. F. A. Huntley and A. F. W. Willoughby, Philos. Mag. 28, 1319 (1973).

    Article  CAS  Google Scholar 

  53. U. Gösele, F. Morehead, W. Frank, and A. Seeger, Appl. Phys. Lett. 38, 157 (1981).

    Article  Google Scholar 

  54. A. Prabhakev, T. C. McGill, and M.-A. Nicolet, Appl. Phys. Lett. 43, 1118 (1983).

    Article  Google Scholar 

  55. S. Mantovani, F. Nava, C. Nobili, M. Conti, and G. Pignatel, Appl. Phys. Lett. 44, 328 (1984).

    Article  CAS  Google Scholar 

  56. R. Falster, Appl. Phys. Lett. 46, 737 (1985).

    Article  CAS  Google Scholar 

  57. A. Seeger, Phys. Status Solidi A61 621 (1980).

    Google Scholar 

  58. M. Hill, M. Lietz, and T. Sittig, J. Electrochem. Soc. 129 1579 (1982).

    Article  CAS  Google Scholar 

  59. J. Hauber, N. A. Stolwijk, L. Tapfer, H. Mehrer, and W. Frank, J. Phys. C19 5817 (1986).

    Google Scholar 

  60. A. F. W. Willoughby, A. G. R. Evans, P. Champ, K. J. Yallup, D. J. Gofrey, and M. G. Dowsett, J. Appl. Phys. 59 2392 (1986).

    Article  CAS  Google Scholar 

  61. K. Nishi, K. Sakamoto, and J. Ueda, J. Appl. Phys. 59 4177 (1986).

    Article  CAS  Google Scholar 

  62. S. M. Hu, J. Appl. Phys. 45, 1567 (1974).

    Article  CAS  Google Scholar 

  63. S. Mizuo and H. Higuchi, Jpn. J. Appl. Phys. 20 739 (1981).

    Article  CAS  Google Scholar 

  64. D. A. Antoniadis and I. Moskowitz, J. Appl. Phys. 53 6988 (1982).

    Google Scholar 

  65. S. Prussin, J. Appl. Phys. 45, 1567 (1974).

    Article  Google Scholar 

  66. E. Sirtl, Semiconductor Silicon 1977 H. R. Huff and E. Sirtl, Eds., The Electrochemical Society, Princeton, New Jersey (1977), p. 4.

    Google Scholar 

  67. S. Mizuo, T. Kusaka, A. Shintani, M. Nanba, and H. Higuchi, J. Appl. Phys. 54, 3860 (1983).

    Article  CAS  Google Scholar 

  68. P. Fahey, G. Barbuscia, M. Moslehi, and R. W. Dutton, Appl. Phys. Lett. 46, 784 (1985).

    Article  CAS  Google Scholar 

  69. P. Fahey, Ph.D. Thesis, Stanford University, Palo Alto, California (1985).

    Google Scholar 

  70. T. Y. Tan and B. J. Ginsberg, Appl. Phys. Lett. 42 448 (1983).

    Article  CAS  Google Scholar 

  71. T. Y. Tan and U. Gösele, J. Appl. Phys. 53, 4767 (1982).

    Article  CAS  Google Scholar 

  72. D. A. Antoniadis, J. Electrochem. Soc. 129 1093 (1982).

    Article  CAS  Google Scholar 

  73. K. Taniguchi, K. Kurosawa, and M. Kashiwaga, J. Electrochem. Soc. 127 2243 (1980).

    Article  CAS  Google Scholar 

  74. M. Miyake, J. Appl. Phys. 58, 711 (1985).

    Article  CAS  Google Scholar 

  75. B. Marioton, U. Gösele, and T. Y. Tan, Chemtronics 1, 156 (1986).

    CAS  Google Scholar 

  76. For references, see: A. F. W. Willoughby, Impurity Doping Processes in Silicon F. F. Y. Wang, Ed., North-Holland, New York (1981), p. 1.

    Google Scholar 

  77. M. Yoshida, E. Arai, H. Nakamura, and Y. Terunuma, J. Appl. Phys. 45, 1498 (1974).

    Article  CAS  Google Scholar 

  78. C. L. Claeys, A. J. DeClerck, and R. J. van Overstraeten, Semiconductor Characterization Techniques P. A. Barnes and G. A. Rozgonyi, Eds., The Electrochemical Society, Princeton, New Jersey (1978), p. 366.

    Google Scholar 

  79. H. Strunk, U. Gösele, and B. O. Kolbesen, Appl. Phys. Lett. 34 530 (1979).

    Article  Google Scholar 

  80. R. J. Jaccodine, Defects in Semiconductors S. Mahajan and J. W. Corbett, Eds., North-Holland, New York (1983), p. 101.

    Google Scholar 

  81. K. Nishi and D. A. Antoniadis, J. Appl. Phys. 59, 1117 (1986).

    Article  CAS  Google Scholar 

  82. R. M. Harris and D. A. Antoniadis, Appl. Phys. Lett. 43 937 (1983).

    Article  CAS  Google Scholar 

  83. P. Fahey, R. W. Dutton, and S. M. Hu, Appl. Phys. Lett. 48, 151 (1984).

    Google Scholar 

  84. J. C. C. Tsai, D. G. Schimmel, R. B. Fair, and W. Maszara, J. Electrochem. Soc. 134 1509 (1987).

    Google Scholar 

  85. R. F. Lever, B. Garben, C. M. Hsieh, and W. A. Orr Arienzo, Impurity Diffusion and Gettering in Silicon R. B. Fair, C. W. Pearce, and J. Washburn, Eds., Materials Research Society, Pittsburgh, Pennsylvania (1985), p. 95.

    Google Scholar 

  86. F. F. Morehead and R. F. Lever, Appl. Phys. Lett. 48, 151 (1986).

    Article  CAS  Google Scholar 

  87. C. L. Claeys, G. J. DeClerck, and R. J. van Overstraeten, Rev. Phys. Appl. 13 797 (1978).

    CAS  Google Scholar 

  88. M. B. Fair and J. C. C. Tsai, J. Electrochem. Soc. 124 1107 (1977).

    Article  CAS  Google Scholar 

  89. M. Yoshida, Jpn. J. Appl. Phys. 18, 479 (1979).

    Article  CAS  Google Scholar 

  90. D. Mathiot and J. C. Pfister, J. Appl. Phys. 55, 3518 (1984);

    Article  CAS  Google Scholar 

  91. D. Mathiot and J. C. Pfister, Appl. Phys. Lett. 47 962 (1985).

    Article  CAS  Google Scholar 

  92. H. F. Schaake, J. Appl. Phys. 55, 1208 (1984).

    Article  CAS  Google Scholar 

  93. B. Rogers and U. Gösele, unpublished.

    Google Scholar 

  94. B. O. Kolbesen and A. MĂĽhlbauer, Solid State Electron. 25, 759 (1982).

    Article  CAS  Google Scholar 

  95. F. Lau and U. Gösele, to be published.

    Google Scholar 

  96. R. B. Fair and W. G. Meyer, Silicon Processing D. G. Gupta, Ed.,ASTM STP 804, Philadelphia, Pennsylvania (1983), p. 290.

    Chapter  Google Scholar 

  97. L. A. Larson, M. I. Current, and C. Healy, Semiconductor Silicon 1986 H. R. Huff, T. Abe, and B. Kolbesen, Eds., The Electrochemical Society, Pennington, New Jersey (1986), p. 667.

    Google Scholar 

  98. L. A. Ladd and J. P. Kalejs, Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon Vol. 59, J. W. Corbett, J. C. Mikkelsen, S. J. Pearton, and S. J. Pennycock, Eds., Materials Research Society, Pittsburgh, Pennsylvania (1986), p. 445.

    Google Scholar 

  99. J. P. Kalejs, L. A. Ladd, and U. Gösele, Appl. Phys. Lett. 45, 268 (1984).

    Article  CAS  Google Scholar 

  100. A. R. Bean and R. C. Newman, J. Phys. & Chem. Solids 32 1211 (1971).

    Article  CAS  Google Scholar 

  101. G. C. Watkins and K. L. Brower, Phys. Rev. Lett. 36, 1329 (1976).

    Article  CAS  Google Scholar 

  102. U. Gösele, Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon Vol. 59, J. W. Corbett, J. C. Mikkelsen, S. J. Pearton, and S. J. Pennycock, Eds., Materials Research Society, Pittsburgh, Pennsylvania (1986), p. 419.

    Google Scholar 

  103. R. C. Newman and J. Wakefield, Metallurgy of Semiconductor Materials 15, J. B. Schroeder, Ed., Interscience, New York (1961), p. 201;

    Google Scholar 

  104. R. C. Newman and J. Wakefield, J. Phys. & Chem. Solids 19, 230 (1961).

    Article  CAS  Google Scholar 

  105. G. Hettich, H. Mehrer, and K. Maier, Inst. Phys. Conf. Ser. 46, 500 (1979).

    Google Scholar 

  106. T. H. Teh, S. M. Hu, and R. H. Kastl, J. Appl. Phys. 39, 4266 (1968).

    Article  Google Scholar 

  107. U. Gösele, W. Frank, and A. Seeger, Solid State Commun. 45, 31 (1982).

    Article  Google Scholar 

  108. Mizuo and Higuchi, Impurity Diffusion and Gettering in Silicon R. B. Fair, C. W. Pearce, and J. Washburn, Eds., Materials Research Society, Pittsburgh, Pennsylvania (1985), p. 125.

    Google Scholar 

  109. S. M. Hu, J. Appl. Phys. 57, 1069 (1985).

    Article  CAS  Google Scholar 

  110. M. Budil, T. Brabec, M. Schrems, S. Selberherr, and H. W. Poetzl, to be published.

    Google Scholar 

  111. B. Kühn, W. Frank, and U. Gösele, to be published.

    Google Scholar 

  112. C. S. Rafferty, M. E. Law, P. B. Griffin, J. D. Shott, R. W. Dutton, and J. D. Plummer, Semiconductor Silicon 1986 H. R. Huff, T. Abe, and B. Kolbesen, Eds., The Electrochemical Society, Pennington, New Jersey (1986), p. 426.

    Google Scholar 

  113. D. P. Kennedy and R. R. O’Brien, IBM J. Res. & Dev. 9, 179 (1965).

    Article  CAS  Google Scholar 

  114. P. Pichler, Ph.D. Thesis, University of Vienna, Vienna, Austria (1986).

    Google Scholar 

  115. A. M. Lin, R. W. Dutton, and D. A. Antoniadis, Appl. Phys. Lett. 35, 799 (1979).

    Article  CAS  Google Scholar 

  116. M. Hamasaki, Solid State Electron. 25, 1 (1982).

    Article  CAS  Google Scholar 

  117. Y.-S. Shin and C.-K. Kim, IEEE Trans. Electron Devices ED-31 797 (1984).

    Article  CAS  Google Scholar 

  118. P. B. Griffin, R. M. Fahey, J. D. Plummer, and R. W. Dutton, Appl. Phys. Lett. 47, 319 (1985).

    Article  CAS  Google Scholar 

  119. K. Taniguchi and D. A. Antoniadis, Appl. Phys. Lett. 46 944 (1985).

    Article  CAS  Google Scholar 

  120. F. Lau and U. Gösele, Semiconductor Silicon 1986 H. R. Huff, T. Abe, and B. Kolbesen, Eds., The Electrochemical Society, Pennington, New Jersey (1986), p. 606;

    Google Scholar 

  121. F. Lau and U. Gösele, Appl. Phys. A40 101 (1986).

    CAS  Google Scholar 

  122. For a general overview, see e.g.: H. R. Huff and F. Shimura, Solid State Technol. 28 (3) 103 (1985).

    CAS  Google Scholar 

  123. W. Kaiser, Phys. Rev., 105 1751 (1957).

    Article  CAS  Google Scholar 

  124. C. Haas, J. Phys. & Chem. Solids 15, 108 (1960).

    Article  CAS  Google Scholar 

  125. J. W. Corbett, R. S. McDonald, and G. D. Watkins, J. Phys. & Chem. Solids 25, 873.

    Google Scholar 

  126. For references on all available data on oxygen diffusion in silicon, see: IEEE Proc. 132, 196 (1985).

    Google Scholar 

  127. J. C. Mikkelsen, Appl. Phys. Lett., 40, 336 (1982).

    Article  CAS  Google Scholar 

  128. P. Gaworzewski and G. Ritter, Phys. Status Solidi, A67, 511 (1981).

    Google Scholar 

  129. S. Hahn, Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon, Vol. 59, J. W. Corbett, J. C. Mikkelsen, S. J. Pearton, and S. J. Pennycock, Eds., Materials Research Society, Pittsburgh, Pennsylvania (1986), p. 181.

    Google Scholar 

  130. W. Bergholz, J. L. Hutchinson, and P. Pirouz, J. Appl. Phys., 58, 3419 (1985).

    Article  CAS  Google Scholar 

  131. U. Gösele and T. Y. Tan, Appl. Phys., A28, 79 (1982).

    Google Scholar 

  132. A. Bourret, Proc. 13th Int. Conf. on Defects in Semiconductors, L. C. Kimerling and J. M. Parsey, Jr., Eds., The Metallurgical Society, Warrendale, Pennsylvania (1985), p. 129, and references therein.

    Google Scholar 

  133. U. Gösele and T. Y. Tan, Impurity Diffusion and Gettering in Silicon, R. B. Fair, C. W. Pearce, and J. Washburn, Eds., Materials Research Society, Pittsburgh, Pennsylvania (1985), p. 105.

    Google Scholar 

  134. S.-T. Lee and D. Nichols, Appl Phys. Lett., 47, 1001 (1985).

    Article  CAS  Google Scholar 

  135. R. C. Newman, M. Clayborn, S. H. Kinder, S. Messoloras, A. S. Dates, and R. J. Stewart, Semiconductor Silicon 1986, H. R. Huff, T. Abe, and B. Kolbesen, Eds., The Electrochemical Society, Pennington, New Jersey (1986), p. 766.

    Google Scholar 

  136. N. A. Stolwijk, W. Frank, J. Höltzl, S. J. Pearton, and E. E. Haller, J. Appl Phys., 57, 5211 (1985).

    Article  CAS  Google Scholar 

  137. For references, see: W. M. Duncan and G. H. Westphal, VLSI Electronics, Vol. 11, N. Einspruch, Ed., Academic Press, New York (1985), p. 41.

    Google Scholar 

  138. J. W. Lee and W. D. Laidig, J. Electron. Mater., 13, 147 (1984).

    Article  CAS  Google Scholar 

  139. A. H. Hamdi, M.-A. Nicolet, and J. L. Tandon, Mater. Lett., 2, 437 (1984).

    Article  CAS  Google Scholar 

  140. T. Fukuzawa, et al., Appl Phys. Lett., 45, 1 (1984).

    Article  CAS  Google Scholar 

  141. D. L. Kendall, Semiconductors and Semimetals, Vol. 4, Academic Press, New York (1968), p. 163.

    Google Scholar 

  142. H. R. Winteler, Helv. Phys. Acta, 44, 451 (1970).

    Google Scholar 

  143. U. Gösele and F. Morehead, J. Appl Phys., 52, 4617 (1981).

    Article  Google Scholar 

  144. A. H. van Ommen, J. Appl. Phys., 54, 5055 (1983).

    Article  Google Scholar 

  145. For references, see: H. C. Casey, Atomic Diffusion in Semiconductors, D. Shaw, Ed., Plenum, New York (1973), p. 351.

    Google Scholar 

  146. M. A. H. Kadhim and B. Tuck, J. Mater. Sci., 7, 68 (1972).

    Article  CAS  Google Scholar 

  147. F. A. Cunnell and C. H. Gooh, J. Phys. & Chem. Solids, 15, 127 (1960).

    Article  CAS  Google Scholar 

  148. M. A. Tuck and M. A. H. Kadhim, J. Mater. Sci., 7, 585 (1972).

    Article  CAS  Google Scholar 

  149. M. D. Zahari and B. Tuck, J. Phys. D: Appl. Phys., 16, 635 (1983).

    Article  CAS  Google Scholar 

  150. R. K. Ball, P. W. Hutchinson, and P. S. Dobson, Philos. Mag., A43, 129 (1981).

    Google Scholar 

  151. H. C. Casey, M. B. Panish, and L. L. Chang, Phys. Rev., 112, 660 (1967).

    Article  Google Scholar 

  152. U. Gösele, to be published.

    Google Scholar 

  153. H. Rupprecht and C. Z. LeMay, J. Appl. Phys., 35, 1970 (1964).

    Article  CAS  Google Scholar 

  154. D. Shaw, Phys. Status Solidi, A86, 629 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gösele, U. (1989). Diffusion in Semiconductors. In: Levy, R.A. (eds) Microelectronic Materials and Processes. NATO ASI Series, vol 164. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0917-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0917-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-0154-7

  • Online ISBN: 978-94-009-0917-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics