Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 164))

Abstract

Ion Implantation has emerged as a common technique of doping semiconductors for integrated circuit production [1–4]. Ion implantation represents the introduction of energetic charged particles into targets with enough energy to penetrate beyond the surface region. The advantages of ion implantation include:

  1. (i)

    precise on-line control of the total number of implanted ions,

  2. (ii)

    independent control of the penetration depth from dose,

  3. (iii)

    achievement of a wide concentration range, with the upper limit generally set by sputtering yield rather than by equilibrium solubility,

  4. (iv)

    ease of integration within a silicon planar technology. The oxide layers used for masking against diffusion can also be used to mask against the ion beam,

  5. (v)

    intrinsic low temperature processing, although a subsequent annealing is generally necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ion Implantation Techniques H. Ryssel and H. Glawischnig, Eds., Springer-Verlag, Berlin (1982).

    Google Scholar 

  2. Ion Implantation and Beam Processing, J. S. Williams and J. M. Poate, Eds. Academic Press, New York (1984).

    Google Scholar 

  3. Ion Implantation: Science and Technology, J. F. Ziegler, Eds., Academic Press, Orlando, Florida (1984).

    Google Scholar 

  4. H. Ryssel and I. Ruge, Ion Implantation, John Wiley & Sons, New York (1986).

    Google Scholar 

  5. K. A. Pickar Applied Solid State Science, Vol. 5, R. Wolfe, Ed., Academic Press, New York (1975), p. 151.

    Google Scholar 

  6. K. J. Reeson, Nucl. Instrum. & Methods Phys. Res., B19/20, 269 (1987).

    Google Scholar 

  7. H. W. Lam and R. F. Pinizzotto, J. Cryst. Growth, 63, 554 (1983).

    CAS  Google Scholar 

  8. G. K. Celler, P. L. F. Hemment, K. W. West, and J. M. Gibson, Appl. Phys. Lett., 48, 532 (1986).

    CAS  Google Scholar 

  9. J. F. Gibbons, Proc. IEEE, 60, 1062 (1972).

    CAS  Google Scholar 

  10. G. K. Celler, and T. E. Seidel Applied Solid State Science, Part C, D. Kahng, Ed., Academic Press, New York (1985), p. 2.

    Google Scholar 

  11. Laser Annealing of Semiconductors, J. M. Poate and J. W. Mayer, Eds., Academic Press, New York (1982).

    Google Scholar 

  12. Surface Modification and Alloying, J. M. Poate, G. Foti and D. C. Jacobson, Eds., Plenum, New York (1983).

    Google Scholar 

  13. Laser and Electron-Beam Solid Interaction and Materials Processing, Vol. 1, G. J. Gibbons, L. D. Hess, and T. W. Sigmon, Eds., North Holland, New York (1981).

    Google Scholar 

  14. C. Hill, Nucl. Instrum. & Methods Phys. Res., B19/20, 348 (1987).

    Google Scholar 

  15. T. Tokuyama, Nucl. Instrum. & Methods Phys. Res., B19/20, 299 (1987).

    Google Scholar 

  16. M. I. Current and W. A. Keenan, Solid State Technol., 28 (2), 139 (1985).

    Google Scholar 

  17. H. Glawischnig, Ion Implantation Techniques, H. Ryssel and H. Glawischnig, Eds., Springer-Verlag, Berlin (1982), p. 3.

    Google Scholar 

  18. D. Aitken, Ion Implantation Techniques, H. Ryssel and H. Glawischnig, Eds., Springer-Verlag, Berlin (1982), p. 23.

    Google Scholar 

  19. J. H. Freeman, Nucl. Instrum. & Methods, 22, 306 (1963).

    Google Scholar 

  20. C. M. McKenna, Ion Implantation Techniques, H. Ryssel and H. Glawischnig, Eds., Springer-Verlag, Berlin (1982), p. 73.

    Google Scholar 

  21. G. Ryding and M. Farley, Nucl. Instrum. & Methods, 189, 295 (1981).

    CAS  Google Scholar 

  22. H. E. Schiott, Mat.-Fys. Medd. Dan. Vidensk. Selsk., 35 (9), 1 (1966).

    Google Scholar 

  23. J. Lindhard, M. Scharff and H. E. Schiott, Mat.-Fys. Medd. Dan. Vidensk. Selsk., 33 (14), 1 (1963).

    Google Scholar 

  24. K. B. Winterbon, Ion Implantation Range and Energy Deposition Distributions, Vol. 2, Plenum, New York (1975).

    Google Scholar 

  25. J. Lindhard and A. Winter, Mat.-Fys. Medd. Dan. Vidensk. Selsk., 34 (4), 1 (1964).

    Google Scholar 

  26. J. A. Davies, Surface Modification and Alloying, J. M. Poate, G. Foti and D. C. Jacobson Eds., Plenum, New York (1983), p. 189.

    Google Scholar 

  27. K. B. Winterbon, P. Sigmund, and J. B. Sanders Mat.-Fys. Medd. Dan. Vidensk. Selsk., 37 (14), 1 (1970).

    Google Scholar 

  28. S. Kalbitzer and H. Oetzmann, Proc. of the 1978 Int. Conf. on Ion Beam Modification of Materials, Hungarian Academy of Sciences, Budapest (1979), p. 3.

    Google Scholar 

  29. D. K. Brice, Ion Implantation Range and Energy Deposition Distributions, Vol. 1, Plenum, New York (1975).

    Google Scholar 

  30. J. P. Biersack and L. G. Haggmark, Nucl. Instrum. & Methods, 174, 257 (1980).

    CAS  Google Scholar 

  31. D. H. Lee and J. W. Mayer, Proc. IEEE, 62, 1241 (1974).

    CAS  Google Scholar 

  32. W. K. Hofker, Philips Res. Rep. Suppl., 8, (1975).

    Google Scholar 

  33. J. F. Gibbons, Handbook on Semiconductors, Vol. 3, T. S. Moss, Ed., North-Holland, Amsterdam (1980), Chapt. 10.

    Google Scholar 

  34. K. Tsukamoto, Y. Akasaka, and K. Kijima, Jpn. J. Appl. Phys., 19, 87 (1980).

    CAS  Google Scholar 

  35. K. Cho, W. R. Allen, T. G. Finstad, W. K. Chu, J. Liu, and J. J. Wortman, Nucl. Instrum. & Methods Phys. Res., B7/8, 265 (1985).

    Google Scholar 

  36. T. E. Seidel, VLSI Technology, S. M. Sze, Ed., McGraw-Hill, New York (1983), p. 219.

    Google Scholar 

  37. H. Ishiwara, S. Furukawa, J. Yamada, and M. Kawamura, Ion Implantation in Semiconductors, S. Namba, Ed., Plenum, New York (1975), p. 423.

    Google Scholar 

  38. T. Hirao, K. Lone, and S. Takayanagi, J. Appl. Phys., 50, 193 (1979).

    CAS  Google Scholar 

  39. E. F. Kennedy, C. Csepregi, J. W. Mayer and T. W. Sigmon, Ion Implantation in Semiconductors and Other Materials, F. Chernow, Ed., Plenum, New York (1977), p. 511.

    Google Scholar 

  40. J. Sansbury, Ion Implantation and Its Contribution to Device and Integrated Circuit Technology, Varian Seminar, VR-99–1975-Vacuum Division, Palo Alto, California (1978).

    Google Scholar 

  41. J. Bottiger, J. A. Davies, P. Sigmund, and K. B. Winterbon, Radiat Eff., 11, 69 (1971);

    Google Scholar 

  42. J. Bottiger, H. Wolder Jorgensen, and K. B. Winterbon, Radiat Eff., 11, 133 (1971).

    Google Scholar 

  43. P. Sigmund, Phys. Rev., 184, 383 (1969).

    CAS  Google Scholar 

  44. H. H. Andersen and H. L. Bay, J. Appl. Phys., 46, 1919 (1975).

    CAS  Google Scholar 

  45. H. Ryssel and K. Hoffman, Process and Device Simulation for MOS-VLSI Circuits, P. Antognetti, D. Antoniadis, R. Dutton, and W. Oldham, Eds., NATO ASI Series, Martinus Nijhoff, The Hague, Netherlands (1983), p. 125.

    Google Scholar 

  46. S. Furukawa, H. Matsumura, and H. Ishiwara, Jpn. J. Appl. Phys., 11, 134 (1972).

    CAS  Google Scholar 

  47. H. Matsumura and S. Furukawa, Jpn. J. Appl. Phys., 14, 1783 (1975).

    Google Scholar 

  48. J. Lindhard, Mat.-Fys. Medd. Dan. Vidensk. Selsk., 34 (14), 1 (1965).

    Google Scholar 

  49. J. A. Davies, Material Characterization Using Ion Beams, J. P. Thomas, Ed., Plenum, New York (1979), p. 343.

    Google Scholar 

  50. R. G. Wilson, H. L. Dunlap, D. M. Jamba and M. R. Myers, Angular Sensitivity of Controlled Implanted Doping Profiles, NBS Spec. Publ. No. 400–49 National Bureau of Standards, Gaithersburg, Maryland.

    Google Scholar 

  51. N. L. Turner, M. I. Current, T. C. Smith, and D. Crane, Solid State Technol., 28 (2), 163 (1985).

    CAS  Google Scholar 

  52. M. I. Current, R. A. Martin, K. Doganis, and R. H. Bruce, Semicond. Int., 8 (6), 106 (1985).

    Google Scholar 

  53. D. Pramanik and M. I. Current, Solid State TechnoL, 27 (5), 211 (1984).

    CAS  Google Scholar 

  54. C. M. McKenna, C. Russo, B. Pedersen, D. Downey, and R. Liebert, Semicond. Int., 9 (4), 101 (1986).

    Google Scholar 

  55. R. D. Rathmell and M. L. Sundquist, Nucl. Instrum. & Method Phys. Res., B6, 56 (1985).

    CAS  Google Scholar 

  56. D. A. Thompson and R. S. Walker, Radiat Eff., 36, 91 (1978).

    CAS  Google Scholar 

  57. F. F. Morehead Jr. and B. L. Crowder, Radiat. Eff., 6, 27 (1970).

    Google Scholar 

  58. F. Spaepen and D. Turnbull, Laser-Solid Interactions and Laser Processing, Am. Inst. Phys. Conf. Series, No. 50, American Institute of Physics, New York (1979), p. 73.

    Google Scholar 

  59. L. A. Christel, J. F. Gibbons, and S. Mylroie, J. Appl. Phys., 51, 6176 (1980).

    CAS  Google Scholar 

  60. B. K. Brice, J. Appl. Phys., 46, 3385 (1975).

    CAS  Google Scholar 

  61. P. V. Pavlov, D. I. Tel’baum, E. I. Zorin, V. I. Alekseev, Sov. Phys.-Solid State, 8, 2141 (1967).

    Google Scholar 

  62. R. S. Walker and D. A. Thompson, Radiat. Eff. 37, 113 (1978).

    CAS  Google Scholar 

  63. G. H. Kinchin and R. S. Pease, Rep. Progr. Phys., 18, 1 (1985).

    Google Scholar 

  64. P. Sigmund, Appl. Phys. Lett, 25, 169 (1974).

    Google Scholar 

  65. T. E. Seidel and A. U. MacRae — First International Conference on Ion Implantation, F. H. Eisen and C. S. Chadderton, Eds., Gordon and Breach, London (1971), p. 169.

    Google Scholar 

  66. A. Chu and J. F. Gibbons, Ion Implantation, F. Chernow, Ed., Plenum, New York (1976), p. 711.

    Google Scholar 

  67. L. Csepregi, E. F. Kennedy, J. W. Mayer, and T. W. Sigmon, J. Appl. Phys., 49, 3096 (1978).

    Google Scholar 

  68. L. Csepregi, J. W. Mayer, and T. W. Sigmon, Appl. Phys. Lett., 29, 92 (1976).

    CAS  Google Scholar 

  69. G. Foti, L. Csepregi, E. F. Kennedy, J. W. Mayer, P. P. Pronko, and M. D. Reichtin, Philos. Mag., A37, 591 (1978).

    Google Scholar 

  70. L. Csepregi, E. F. Kennedy, T. J. Gallagher, J. W. Mayer, and T. W. Sigmon, J. Appl. Phys., 48, 4234 (1977).

    CAS  Google Scholar 

  71. E. F. Kennedy, L. Csepregi, J. W. Mayer, and T. W. Sigmon, J. Appl. Phys., 48, 4241 (1977).

    CAS  Google Scholar 

  72. S. S. Lau, W. F. Tseng, and J. W. Mayer, Handbook on Semiconductors, Vol. 3, S. P. Keller, Ed., North-Holland, Amsterdam (1980), Chapt. 7.

    Google Scholar 

  73. I. S. Suni, G. Goltz, M. G. Grimaldi, M.-A. Nicolet, and S. S. Lau, Appl. Phys. Lett. 40, 269 (1982).

    CAS  Google Scholar 

  74. J. S. Williams and R. G. Elliman, Appl. Phys. Lett., 37, 829 (1980).

    CAS  Google Scholar 

  75. S. U. Campisano and A. E. Barbarino, Appl. Phys., 25, 153 (1981).

    CAS  Google Scholar 

  76. J. S. Williams, Surface Modification and Alloying, J. M. Poate, G. Foti, and D. C. Jacobson, Eds., Plenum, New York (1983), p. 133.

    Google Scholar 

  77. J. S. Williams and R. G. Elliman, Phys. Rev. Lett., 51, 1069 (1983).

    CAS  Google Scholar 

  78. H. Tamura, T. Ikeda, and T. Tokuyama, Second International Conference on Ion Implantation, I. Ruge and J. Graul, Eds., Springer-Verlag, Berlin, (1972), p. 96.

    Google Scholar 

  79. S. Mader, Ion Implantation: Science and Technology, J. F. Ziegler, Ed., Academic Press, Orlando, Florida (1984), p. 109.

    Google Scholar 

  80. K. Tsukamoto, Y. Akasaka, and K. Kijima, Jpn. J. Appl. Phys., 19, 87 (1980).

    CAS  Google Scholar 

  81. H. Müller, J. Gyulai, J. W. Mayer, W. K. Chu, and T. W. Sigmon, J. Electrochem. Soc., 122, 1234 (1975).

    Google Scholar 

  82. E. Rimini, Surface Modification and Alloying, J. M. Poate, G. Foti, and D. C. Jacobson, Eds., Plenum, New York (1983), p. 15.

    Google Scholar 

  83. G. Foti and E. Rimini Laser Annealing of Semiconductors, J. W. Mayer and J. M. Poate, Eds. Academic Press, New York (1982), p. 203.

    Google Scholar 

  84. J. F. Gibbons and T. W. Sigmon, Laser Annealing of Semiconductors, J. M. Poate and J. W. Mayer, Eds., Academic Press, New York (1982), p. 325.

    Google Scholar 

  85. T. E. Seidel, C. S. Pai, D. J. Lischner, and S. S. Lau, Extended Abst. Electrochem. Soc., 84–7, 184 (1984).

    Google Scholar 

  86. T. E. Seidel, D. J. Lischner, C. S. Pai, R. V. Knoell, D. H. Maker, and D. C. Jacobson, Nucl Instrum. & Methods Phys. Rev., B7/8, 251 (1985).

    Google Scholar 

  87. D. J. Lischner and G. K. Celler, Laser and ElectronBeam Interactions with Solids, B. R. Appleton and G. K. Celler, Eds. North-Holland, Amsterdam (1982), p. 759.

    Google Scholar 

  88. S. R. Wilson, W. H. Paulson, R. B. Gregory, A. H. Hamdi, and F. D. McDaniel, J. Appl Phys., 55, 12 (1984).

    Google Scholar 

  89. S. R. Wilson, R. B. Gregory, and W. H. Paulson, Mater. Res. Soc. Symp. Proc, Vol. 52, Materials Research Society, Pittsburgh, Pennsylvania (1986), p. 181.

    Google Scholar 

  90. R. E. Sheet, Mater. Res. Soc. Symp. Proc., Vol. 52, Materials Research Society, Pittsburgh, Pennsylvania (1986), p. 191.

    Google Scholar 

  91. A. Gat, IEEE Electron Device Lett., 2, 85 (1981).

    Google Scholar 

  92. J. Gelpay and P. Stump, Microelectronic Manufacturing and Testing, Lake Publishing, Libertyville, Illinois (1983), p. 21.

    Google Scholar 

  93. R. T. Fulks, C. J. Russo, P. R. Hanley, and T. I. Karmins, Appl. Phys. Lett., 39, 604 (1981).

    CAS  Google Scholar 

  94. Operational Manual for 210M, AG Associated, Palo Alto, California (1982).

    Google Scholar 

  95. M. Y. Tsai and B. G. Streetman, J. Appl. Phys., 50, 183 (1979).

    CAS  Google Scholar 

  96. V. K. Basre and D. F. Downey, Sixth International Conference on Ion Implantation, Berkeley, California (1986).

    Google Scholar 

  97. N. E. B. Cowern, K. J. Yallup, and D. J. Godfrey, Appl. Phys. Lett., 48, 704 (1986).

    CAS  Google Scholar 

  98. S. Solmi, S. Guimaraes, E. Landi, and P. Negrini, Semiconductor Silicon 1986, H. R. Huff, T. Abe, and B. Kolbeson, Eds., The Electrochemical Society, Pennington, New Jersey (1986), p. 583.

    Google Scholar 

  99. D. E. Davies, IEEE Electron Device Lett., 6, 397 (1985).

    Google Scholar 

  100. D. G. Beanland, Ion Implantation and Beam Processing, J. S. Williams and J. M. Poate, Eds., Academic Press, New York (1984), p. 261.

    Google Scholar 

  101. J. Narayan and O. W. Holland, J. Electrochem. Soc., 131, 2651 (1984).

    CAS  Google Scholar 

  102. S. Cannavò, M. G. Grimaldi, E. Rimini, G. Ferla, and L. Gandolfi, Appl. Phys. Lett., 47, 138 (1985).

    Google Scholar 

  103. J. S. Williams, R. G. Elliman, W. L. Brown, and T. E. Seidel, Mater. Res. Soc Symp. Proc., Vol. 37, Materials Research Society, Pittsburgh, Pennsylvania, (1985), p. 127.

    Google Scholar 

  104. J. S. Williams, R. G. Elliman, W. L. Brown, and T. E. Seidel, Phys. Rev. Lett., 55, 1482 (1985).

    CAS  Google Scholar 

  105. A. Leiberich, D. M. Maher, R. V. Knoell and W. L. Brown, Nucl. Instrum. & Methods Phys. Res., B19/20, 457 (1987).

    Google Scholar 

  106. S. Cannavò, A. La Ferla, E. Rimini, G. Ferla, and L. Gandolfi, J. Appl. Phys., 59, 4038 (1986).

    Google Scholar 

  107. S. Cannavò, A. La Ferla, S. U. Campisano, E. Rimini, G. Ferla, L. Gandolfi, J. Liu, and M. Servidori, Mat. Res. Soc. Symp. Proc., Vol. 51, Materials Research Society, Pittsburgh, Pennsylvania (1986), p. 328.

    Google Scholar 

  108. D. L. Kwong, D. C. Meyers, N. S. Alvi, IEEE Electron Device Lett., 6, 244 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rimini, E. (1989). Ion Implantation. In: Levy, R.A. (eds) Microelectronic Materials and Processes. NATO ASI Series, vol 164. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0917-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0917-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-0154-7

  • Online ISBN: 978-94-009-0917-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics