Skip to main content

The Influence of Lattice Defects on Alloy Phase Diagrams

  • Chapter
  • 365 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 163))

Abstract

An atom in the core of a lattice defect is effectively a foreign atom. Since the concentration of such core atoms is rarely greater than 10−4, lattice defects usually have little influence on alloy phase diagrams, though they control the kinetics of phase changes. Static defects may affect the phase diagram if they are present in unusually high concentrations, or if the phase equilibrium is delicate. Defects such as phonons and magnons may be present in thermal equilibrium in atomic concentrations greater than or comparable with unity, and have a large influence on phase equilibria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Seitz, in Imperfections in Nearly Perfect Crystals, John Wiley, New York, 3, 1952.

    Google Scholar 

  2. J. Molenaar and W. H. Aarts, Nature, Lond., 166, 690,1950.

    Article  ADS  Google Scholar 

  3. T. H. Blewitt, R. R. Coltman and J. K. Redman, in Defects in Crystalline Solids, The Physical Society, London, 369, 1955.

    Google Scholar 

  4. K. F. Berggren, Phil Mag. 27, 1027, 1973.

    Article  ADS  Google Scholar 

  5. G. B. Olsen and M. Cohen in Dislocations in Solids 7, North-Holland, Amsterdam, 295, 1986.

    Google Scholar 

  6. M. W. Thompson, Defects and Radiation Damage in Metals, Cambridge University Press, 1969.

    Google Scholar 

  7. P. H. Dederichs, in Vacancies’76, The Metals Society, London, 22, 1977.

    Google Scholar 

  8. H. R. Paneth, Phys. Rev. 80, 708, 1950.

    Article  ADS  Google Scholar 

  9. G. H. Vineyard, J. Phys. Soc. Japan Suppl. III 18, 144, 1963.

    Google Scholar 

  10. D. P. Seraphim, N. R. Stemple and D. T. Novick, J. Appl. Phys. 33, 136, 1962.

    Article  ADS  Google Scholar 

  11. R. E. Villagrana and G. Thomas, Phys. Stat. Sol. 9, 499, 1965.

    Article  ADS  Google Scholar 

  12. F. R. N. Nabarro, in Strength of Solids, The Physical Society, London, 75, 1948.

    Google Scholar 

  13. C. H. Woo and W. Frank, J. Nucl. Mater. 137, 7, 1985.

    Article  ADS  Google Scholar 

  14. K. Krishan, Radiation Effects 66, 121, 1982.

    Article  Google Scholar 

  15. J. H. Evans, Radiation Effects 10, 55, 1971.

    Article  ADS  Google Scholar 

  16. V. K. Sikka and J. Moteff, Crystal Lattice Defects 3, 113, 1972.

    Google Scholar 

  17. J. Frenkel, Kinetic Theory of Liquids, Clarendon Press, Oxford, 36–40, 1946.

    MATH  Google Scholar 

  18. R. Bray, Solid State Commun, 60, 867, 1986.

    Article  ADS  Google Scholar 

  19. E. R. Weber Solid State Commun, 60, 871, 1986.

    Article  ADS  Google Scholar 

  20. J.C. Hamilton, Phys. Rev. Lett 42, 989, 1979.

    Article  ADS  Google Scholar 

  21. A. R. Miedema, F. R. de Boer and P. F. de Chatel, J.Phys.F 3, 1588, 1973.

    ADS  Google Scholar 

  22. A. R. Miedema, J. Less-Common Met. 32, 117, 1973.

    Article  Google Scholar 

  23. A. R. Miedema, R. Boom and F. R. de Boer, J. Less-Common Met. 41, 283, 1975.

    Article  Google Scholar 

  24. R. Boom, F. R. de Boer and A. R. Miedema, J. Less-Common Met. 46, 271, 1976.

    Article  Google Scholar 

  25. A. R. Miedema, Philips Tech. Rev. 36, 217, 1976.

    Google Scholar 

  26. S. Geller, Solid Electrolytes, Springer, Berlin, 1977.

    Google Scholar 

  27. M. B. Salamon, Physics of Superionic Conductors, Springer, Berlin, 1979.

    Google Scholar 

  28. A. J. Bradley and A. Taylor, Proc. Roy. Soc. Lond., A 159, 56, 1937.

    Article  ADS  Google Scholar 

  29. H. Lipson and A. Taylor, Proc. Roy. Soc. Lond.,A 173, 232, 1939.

    Article  ADS  Google Scholar 

  30. G.V. Raynor, Progress in Metal Physics 1, 1, 1949.

    Article  ADS  Google Scholar 

  31. F. R. N. Nabarro, Theory of Crystal Dislocations, Clarendon Press, Oxford, 1967.

    Google Scholar 

  32. Y. Bouligand, Dislocations in Solids 5, 299, 1980.

    Google Scholar 

  33. H. Träuble, Phys. Stat. Sol. 25, 373, 1968.

    Article  ADS  Google Scholar 

  34. N. Rivier, Phil. Mag. 40, 859, 1979.

    Article  Google Scholar 

  35. F. R. N. Nabarro in Mechanical and Thermal Behaviour of Metallic Materials, North-Holland, Amsterdam, 35, 1982.

    Google Scholar 

  36. J. M. Ziman, Electrons and Phonons, Clarendon Press, Oxford, §9.4, 1960.

    MATH  Google Scholar 

  37. F. R. N. Nabarro, Theory of Crystal Dislocations, Clarendon Press, Oxford, 1967, §9.2.2.

    Google Scholar 

  38. Y. Yosida and K. Kawamura, Z. Physik B 32, 355, 1979.

    Article  ADS  Google Scholar 

  39. H.-J. Huang and K. Kawamura, Solid State Commun., 41, 939, 1982.

    Article  ADS  Google Scholar 

  40. R. A. Brown, J. Phys. F 7, 1269, 1977.

    Article  ADS  Google Scholar 

  41. R. A. Brown, J. Phys. F 7, 1283, 1977.

    Article  ADS  Google Scholar 

  42. R. A. Brown, J. Phys. F 8, 1467, 1978.

    Article  ADS  Google Scholar 

  43. V. Vitek, Dislocations 1984, CNRS, Paris, 435, 1984.

    Google Scholar 

  44. F. C. Frank, Adv. Physics 1, 91, 1952.

    Article  ADS  Google Scholar 

  45. A. R. Verma and P. Krishna, Polymorphism and Polytypism in Crystals, John Wiley, New York, 1966.

    Google Scholar 

  46. F. C. Frank, Phil. Mag., in the press.

    Google Scholar 

  47. R. Labusch and W. Schröter, Dislocations in Solids 5, 127, 1980.

    Google Scholar 

  48. H. Alexander, Dislocations in Solids 7, 113, 1986.

    Google Scholar 

  49. A.H. Cottrell, S. C. Hunter and F. R. N. Nabarro, Phil. Mag. 44, 1064, 1953.

    Google Scholar 

  50. G. Tammann, Zeits. anorg. allg. Chemie 107, 1,1919.

    Article  Google Scholar 

  51. G. Tammann and C. Wilson, Zeits anorg. allg. Chemie 173, 156, 1928.

    Article  Google Scholar 

  52. W. Boas, in Dislocations and Mechanical Properties of Crystals, New York, John Wiley, 406, 1957.

    Google Scholar 

  53. E. L. Yates, Aust. J. Phys. 16, 40, 1963.

    Article  ADS  Google Scholar 

  54. Gold u. Silber u. Uhren u. Schmuck, 1975 No. 12, p.47.

    Google Scholar 

  55. R. Kikuchi, J. M. Sanchez, D. de Fontaine and H. Yamauchi, Acta Metall. 28, 651, 1980.

    Article  Google Scholar 

  56. H. Yamauchi, H.A. Yoshimatsu, A. R. Forouhi and D. de Fontaine, Precious Metals, Proc. Fourth Internat. Precious Metals Inst. Conf., Internat. Precious Metals Inst., New York p.241.

    Google Scholar 

  57. W. Scott and L. Muldawer, Phys. Rev. 39, 1115, 1974.

    Google Scholar 

  58. J. B. Andrews, R. J. Nastasi-Andrews and R. E. Hummel, Phys. Rev. B 22, 1837, 1980.

    Article  ADS  Google Scholar 

  59. H. Margenau, Phys. Rev. 33, 1035, 1929.

    Article  ADS  Google Scholar 

  60. L. G. Schultz and F. R. Tangherlini, J. Opt. Soc. Amer. 44, 362, 1954.

    Article  ADS  Google Scholar 

  61. R. Meservey and B. B. Schwartz, in R. D. Parks (ed), Superconductivity 1, 117, 1969.

    Google Scholar 

  62. R. W. Shaw and D. E. Mapother, Phys. Rev. 118, 1474, 1960.

    Article  ADS  Google Scholar 

  63. W. F. Druyvesteyn, D. J. van Ooijen and T. J. Berben, Phys. Rev. 36, 58, 1964.

    Google Scholar 

  64. J. F. Schenck and R. W. Shaw, J. Appl. Phys. 40, 5165, 1969.

    Article  ADS  Google Scholar 

  65. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd edition, New York, John Wiley, 1982.

    Google Scholar 

  66. S. Amelinckx, Chemica Scripta 14, 197, 1978–79.

    Google Scholar 

  67. A. Loiseau, G. van Tendeloo, R. Portier and F. Ducastelle, J.Phys. (Paris) 46 595, 1985.

    Article  Google Scholar 

  68. P. Bak, Physics Today, December 1986, p.38.

    Google Scholar 

  69. A. Magnéli, Acta Crystallogr. 6, 495, 1953.

    Article  Google Scholar 

  70. R. J. D. Tilley, Chemica Scripta 14, 147, 1978–79.

    Google Scholar 

  71. G. H. Döhler, Scientific American 249, (5), 118, Nov. 1983.

    Article  Google Scholar 

  72. R. W. Cahn, Nature, Lond. 324, 108, 1986.

    Article  ADS  Google Scholar 

  73. J. W. Christian, The Theory of Transformations in Metals and Alloys, Oxford, Pergamon, 1965.

    Google Scholar 

  74. R. W. Cahn, Nature, Lond. 323, 668, 1986.

    Article  ADS  Google Scholar 

  75. G. L. Allen, R. A. Bayles, W. W. Gile and W. A. Jesser, Thin Solid Films 144, 297, 1986.

    Article  ADS  Google Scholar 

  76. J. W. M. Frenken and J. F. van der Veen, Phys. Rev. Lett, 54, 134, 1985.

    Article  ADS  Google Scholar 

  77. J. Tateno, Nature, Lond. 325, 43, 1987.

    Article  ADS  Google Scholar 

  78. R. Lipowsky and W. Speth, Phys. Rev. B 28, 3983, 1983.

    Article  ADS  Google Scholar 

  79. T. Wolfram, R. E. Dewames, W. F. Hall and P. W. Palmberg, Surface Science, 28, 45, 1971.

    Article  ADS  Google Scholar 

  80. G. L. Allen and W. A. Jesser, J. Crystal Growth, 70, 546, 1984.

    Article  ADS  Google Scholar 

  81. D. de Fontaine, Solid State Physics, 34, 74, 1979.

    Article  Google Scholar 

  82. R. J. D. Tilley, A. C. Wright and D. J. Smith, Proc. Roy. Soc. Lond. A 408, 9, 1986.

    Article  ADS  Google Scholar 

  83. F. C. Frank and J. S. Kasper, Acta Crystallogr. 11, 184, 1958.

    Article  Google Scholar 

  84. F. C. Frank and J. S. Kasper, Acta Crystallogr. 12, 483, 1959.

    Article  Google Scholar 

  85. D. R. Nelson, Phys. Rev. Lett. 50, 982, 1983.

    Article  ADS  Google Scholar 

  86. J. F. Sadoc, J. Phys. (Paris) Lett. 44, L-707, 1983.

    Google Scholar 

  87. V. E. Cosslett and D. J. Smith, Chemica Scripta 14, 39, 1978–79.

    Google Scholar 

  88. P. H. Gaskell, D. J. Smith, C. J. D. Catto and J. R. A. Cleaver, Nature, Lond. 281, 465, 1979.

    Article  ADS  Google Scholar 

  89. T. C. Phillips, J. C. Bean, B. A. Wilson and A. Ourmazd, Nature, Lond. 325, 121, 1987.

    Article  ADS  Google Scholar 

  90. C Kittel, Elementary Solid State Physics John Wiley, New York, p.169, 1962.

    Google Scholar 

  91. J. M. Ziman, Principles of the Theory of Solids, Cambridge University Press, 1964, p.190.

    MATH  Google Scholar 

  92. J. Kopp, J. Phys. F 5, 1211, 1975.

    Article  ADS  Google Scholar 

  93. D. G. Pettifor, CALPHAD 1, 305, 1977.

    Article  Google Scholar 

  94. H. Hasegawa and D. G. Pettifor, Phys. Rev. Lett. 50, 130, 1983.

    Article  ADS  Google Scholar 

  95. H. Hasegawa, M. W. Finnis and D. G. Pettifor, J. Phys. F 15, 19, 1985.

    Article  ADS  Google Scholar 

  96. B. I. Halperin and T. M. Rice, Solid State Physics 21, 115, 1968.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nabarro, F.R.N. (1989). The Influence of Lattice Defects on Alloy Phase Diagrams. In: Stocks, G.M., Gonis, A. (eds) Alloy Phase Stability. NATO ASI Series, vol 163. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0915-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0915-1_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6901-4

  • Online ISBN: 978-94-009-0915-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics