Skip to main content

In Vivo Detection of Free Radical Metabolites

  • Chapter
Free Radicals in Synthesis and Biology

Part of the book series: NATO ASI Series ((ASIC,volume 260))

  • 252 Accesses

Abstract

In the last two decades since the introduction of the ESR spin trapping technique the ESR study of free radical formation in vitro due to xenobiotic metabolism has been significantly enhanced. Although this ESR technique has proven useful in vitro, it has only recently been applied to drug metabolism in vivo. Spin trapping has successfully been employed to study the metabolism of halocarbons and hydrazines in perfused organs and in whole animals. The results of these current studies are detailed herein. In addition, the merits and pitfalls associated with the in vivo application of spin trapping are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, F.F., D.L. Cowan, and A.Y. Sun. Detection of free radical formation in various tissues after acute carbon tetrachloride administration in the gerbil. Life Sciences 41: 2469–2475 (1987).

    Article  CAS  Google Scholar 

  • Albano, E., K.A.K. Lott, T.F. Slater, A. Stier, M.C.R. Symons, and A. Tomasi. Spin-trapping studies on the free-radical products formed by metabolic activation of carbon tetrachloride in rat liver microsomal fractions isolated hepatocytes and in vivo in the rat. Biochem. J. 204: 593–603 (1982).

    CAS  Google Scholar 

  • Aoshima, H., T. Kajiwara, T. Hatanaka, and H. Hatano. Electron spin resonance studies on the lipoxygenase reaction by spin trapping and spin labelling methods. J. Biochem. 82: 1559–1565 (1977).

    CAS  Google Scholar 

  • Augusto, O., H.S. Beilan, and P.R. Ortiz de Montellano. The catalytic mechanism of cytochrome P-450. Spin trapping evidence for one-electron substrate oxidation. J. Biol. Chem. 257: 11288–11295 (1982).

    CAS  Google Scholar 

  • Beaven, G.H., and J.C. White. Oxidation of phenylhydrazines in the presence of oxyhaemoglobin and the origin of Heinz bodies in erythrocytes. Nature 173: 389–391 (1954).

    Article  CAS  Google Scholar 

  • Becker, A.R., and L.A. Sternson. Nonenzymatic reduction of nitrosobenzene to phenylhydroxylamine by NAD(P)H. Bioorg. Chem. 9: 305–312 (1980).

    Article  CAS  Google Scholar 

  • Buettner, G.R., 1982, ‘The spin trapping of superoxide and hydroxyl radicals’, in: Superoxide Dismutase Volume II (L.W. Oberely, ed.) CRC Press, Boca Raton, Florida, pp. 63–81.

    Google Scholar 

  • Butler, T.C. Reduction of carbon tetrachloride in vivo and reduction of carbon tetrachloride and chloroform in vitro by tissues and tissue constituents. J. Pharmacol. Exp. Ther. 134: 311–319 (1961).

    CAS  Google Scholar 

  • Cederbaum, A.I., and G. Cohen. Inhibition of the microsomal oxidation of ethanol and 1-butanol by the free-radical, spin-trapping agent 5,5-dimethyl-l-pyrroline-l-oxide. Arch. Biochem. Biophys. 204: 397–403 (1980).

    Article  CAS  Google Scholar 

  • Cheeseman, K.H., E.F. Albano, A. Tomasi, M.U. Dianzani, and T.F. Slater. The effects of the spin traps PBN and 4-POBN on microsomal drug metabolism and hepatocyte viability. Life Chem. Reports 3: 259–264 (1985).

    CAS  Google Scholar 

  • Cinti, D.L. Agents activating the liver microsomal mixed function oxidase system. Pharmac. Therap:A 2: 727–749 (1978).

    CAS  Google Scholar 

  • Cohen, G. and P. Hochstein. Generation of hydrogen peroxide in erythrocytes by hemolytic agents. Biochemistry 3: 895–900 (1964).

    Article  CAS  Google Scholar 

  • Connor, H.D., R.G. Thurman, M.D. Galizi, and R.P. Mason. The formation of a novel free radical metabolite from CCI4, in the perfused rat liver and in vivo. J. Biol. Chem. 261: 4542–4548 (1986).

    CAS  Google Scholar 

  • Eriksson, U.G., R.C. Brasch, and T.N. Tozer. Nonenzymatic bioreduction in rat liver and kidney of nitroxyl spin labels, potential contrast agents in magnetic resonance imaging. Drug Metab. Disp. 15: 155–160 (1987).

    CAS  Google Scholar 

  • Finkelstein, E., G.M. Rosen, E.J. Rauckman, and J. Paxton. Spin trappinj of superoxide. Mol. Pharmacol. 16: 676–685 (1979).

    CAS  Google Scholar 

  • Finkelstein, E., G.M. Rosen, and E.J. Rauckman. Spin trapping of superoxide and hydroxyl radical: practical aspects. Arch. Biochem. Biophys. 200: 1–16 (1980).

    Article  CAS  Google Scholar 

  • Fujii, K., M. Morio, H. Kikuchi, S. Ishihara, M. Okida, and F. Ficor. In vivo spin-trap study on anaerobic dehalogenation of halothane. Life Sci. 35: 463–468 (1984).

    Article  CAS  Google Scholar 

  • Goldberg, B., A. Stern, J. Peisach, and W.E. Blumberg. The detection of superoxide anion from the reaction of oxyhemoglobin and Phenylhydrazine using EPR spectroscopy. Experientia 35: 488–489 (1979).

    Article  CAS  Google Scholar 

  • Green, M.J., H.A.O. Hill, and D.G. Tew. Applications of spin-trapping to biological systems. Biochem. Soc. Trans. 13: 600–603 (1985).

    CAS  Google Scholar 

  • Hampton, M.J., R.A. Floyd, E.G. Janzen, and R.V. Shetty. Mutagenicity of free-radical spin-trapping compounds. Mut. Res. 91: 279–283 (1981).

    Article  CAS  Google Scholar 

  • Horie, S., T. Watanabe, and Y. Ogura. Studies on the enzymatic reduction of C-nitroso compounds. J. Biochem. 88: 847–857 (1980).

    CAS  Google Scholar 

  • Janzen, E.G., 1980, ‘A critical review of spin trapping in biological systems’, in: Free Radicals in Biology Volume IV (W.A. Pryor, ed.) Academic Press, New York, pp. 115–154.

    Google Scholar 

  • Kalyanaraman, B., E. Perez-Reyes, and R.P. Mason. The reduction of nitroso-spin traps in chemical and biological systems. A cautionary note. Tetrahedron Lett. 1979: 4809–4812 (1979a).

    Article  Google Scholar 

  • Kalyanaraman, B., R.P. Mason, E. Perez-Reyes, C.F.Chignell, C.R. Wolf, and R.M. Philpot. Characterization of the free radical formed in aerobic microsomal incubations containing carbon tetrachloride and NADPH. Biochem. Biophys. Res. Commun. 89: 1065–1072 (1979b).

    Article  CAS  Google Scholar 

  • Kalyanaraman, B., E. Perez-Reyes, and R.P. Mason. Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Biochim. Biophys. Acta 630: 119–130 (1980).

    CAS  Google Scholar 

  • Kalyanaraman, B., 1982, ‘Detection of toxic free radicals in biology and medicine’, in: Rev. Biochem. Toxic, Volume 4 (E. Hodgson, J.R. Bend, and R.M. Philpot, eds.) Elsevier Biomedical, New York, pp. 73–139.

    Google Scholar 

  • Knecht, K.T., and R.P. Mason. In vivo radical trapping and biliary secretion of radical adducts of carbon-tetrachloride-derived free radical metabolites. Drug. Metab. Disp., in press (1988).

    Google Scholar 

  • Kubow, S., E.G. Janzen, and T.M. Bray. Spin-trapping of free radicals formed during in vitro and in vivo metabolism of 3-methylindole. J. Biol. Chem. 259: 4447–4451 (1984).

    CAS  Google Scholar 

  • LaCagnin, L.B., H.D. Connor, R.P. Mason, and R.G. Thurman. The carbon dioxide anion radical adduct in the perfused rat liver: Relationship to halocarbon-induced toxicity. Mol. Pharmacol. 33: 351–357 (1988).

    CAS  Google Scholar 

  • Lai, E.K., P.B. McCay, T. Noguchi, and K.-L. Fong. In vivo spin-trapping of trichloromethyl radicals formed from CCl4,. Biochem. Pharm. 28: 2231–2235 (1979).

    Article  CAS  Google Scholar 

  • Lai, E.K., C. Crossley, R. Sridhar, H.F. Misra, E.G. Janzen, and F.B. McCay. In vivo spin-trapping of free radicals generated in brain, spleen, and liver during Y radiation of mice. Arch. Biochem. Biophys. 244: 156–160 (1986).

    Article  CAS  Google Scholar 

  • Maples, K.R., S.J. Jordan, and R.P. Mason. In vivo rat hemoglobin thiyl free radical formation following Phenylhydrazine administration. Mol. Pharmacol. 33: 344–350 (1988a).

    CAS  Google Scholar 

  • Maples, K.R., S.J. Jordan, and R.P. Mason. In vivo rat hemoglobin thiyl free radical formation following the administration of Phenylhydrazine and hydrazine-based drugs. Drug Metab. Dispos., in press (1988b).

    Google Scholar 

  • Mason, R.P., B. Kalyanaraman, B.E. Tainer, and T.E. Eling. A carbon-centered free radical intermediate in the prostaglandin synthetase oxidation of arachidonic acid. J. Biol. Chem. 255: 5019–5022 (1980).

    CAS  Google Scholar 

  • Mason, R.P., 1982, ‘Free-radical intermediates in the metabolism of toxic chemicals’, in: Free Radicals in Biology, Volume V (W.A. Pryor, ed.), Academic Press, New York, pp. 161–222.

    Google Scholar 

  • Mason, R.P., 1984, ‘Spin trapping free radical metabolites of toxic chemicals’, in: Spin Labeling in Pharmacology, (J.L. Holtzman, ed.) Academic Press, New York, pp. 87–129.

    Google Scholar 

  • Mason, R.P., and C. Mottley, 1987, ‘Spin trapping free radical metabolites of inorganic chemicals’, in: Electron Spin Resonance, Volume 10B (M.C.R. Symons, senior reporter), Royal Society of Chemistry, London, pp. 185–197.

    Chapter  Google Scholar 

  • McCay, P.B., E.K. Lai, J.L. Foyer, C.M. DuBose, and E.G. Janzen. Oxygen-and carbon-centered free radical formation during carbon tetrachloride metabolism. J. Biol. Chem. 259: 2135–2143 (1984).

    CAS  Google Scholar 

  • Mottley, C., B. Kalyanaraman, and R.P. Mason. Spin trapping artifacts due to the reduction of nitroso spin traps. FEBS Lett. 130: 12–14 (1981).

    Article  CAS  Google Scholar 

  • Mottley, C., T.B. Trice, and R.P. Mason. Direct detection of the sulfur trioxide radical anion during the horseradish peroxidase-hydrogen peroxide oxidation of sulfite (aqueous sulfur dioxide). Mol. Pharmacol. 22: 732–737 (1982).

    CAS  Google Scholar 

  • Mottley, C., and R.P. Mason, 1988, ‘Nitroxide radical adducts in biology: chemistry, applications, and pitfalls’, in: Spin Labeling. Theory and Applications, Volume III (L.J. Berliner, ed.) Academic Press, New York.

    Google Scholar 

  • Murray, M., and A.J. Ryan. Inhibition and enhancement of mixed-function oxidases by nitrogen heterocycles. Biochem. Pharmacol. 31: 3002–3005 (1982).

    Article  CAS  Google Scholar 

  • Nizet, A. Une reaction de la Phenylhydrazine avec 1‘oxyhemoglobine. Application au dosage de l’hemoglobine dans le sang. Bull. Soc. Chim. Biol. 28: 527–530 (1946).

    CAS  Google Scholar 

  • Ortiz de Montellano, P.R., and K.L. Kunze. Formation of N-phenylheme in the hemolytic reaction of Phenylhydrazine with hemoglobin. J. Am. Chem. Soc. 103: 6534–6536 (1981).

    Article  CAS  Google Scholar 

  • Ortiz de Montellano, P.R., O. Augusto, F. Viola, and K.L. Kunze. Carbon radicals in the metabolism of alkyl hydrazines. J. Biol. Chem. 258: 8623–8629 (1983).

    CAS  Google Scholar 

  • Perkins, M.J., Spin trapping, Advan. Phys. Org. Chem. 17: 1–64 (1980).

    Article  CAS  Google Scholar 

  • Plummer, J.L., A.L.J. Beckwith, F.N. Bastin, J.F. Adams, M.J. Cousins, and P. Hall. Free radical formation in vivo and hepatotoxicity due to anesthesia with halothane. Anesthesiology 57: 160–166 (1982).

    Article  CAS  Google Scholar 

  • Poyer, J.L., P.B. McCay, C.C. Weddle, P.E. Downs. In vivo spin-trapping of free radicals formed during halothane metabolism. Biochem. Pharm. 30: 1517–1519 (1981).

    Article  CAS  Google Scholar 

  • Poyer, J.L., P.B. McCay, E.K. Lai, E.G. Janzen, and E.R. Davis. Confirmation of assignment of the13trichlororaethyl radical spin adduct detected by spin trapping during C-carbon tetrachloride metabolism in vitro and in vivo. Biochem. Biophys. Res. Commun. 94: 1154–1160 (1980).

    Article  CAS  Google Scholar 

  • Reinke, L.A., E.K. Lai, C.M. DuBose, and P.B. McCay. Reactive free radical generation in vivo in the heart and liver of ethanol-fed rats: Correlation with in vitro radical formation. Proc. Natl. Acad. Sci. USA, in press (1988).

    Google Scholar 

  • Rosen, G.M., and E.J. Rauckman. Formation and reduction of a nitroxide radical by liver microsomes. Biochem. Pharmacol. 26: 675–678 (1977).

    Article  CAS  Google Scholar 

  • Rosen, G.M., and E. Finkelstein, 1985, Use of spin traps in biological systems, Adv. Free Rad. Biol. Med. 1: 345–375.

    Article  CAS  Google Scholar 

  • Sinha, B.K. Activation of hydrazine derivatives to free radicals in the perfused liver: a spin trapping study. Biochim. Biophys. Acta 924: 261–269 (1987).

    CAS  Google Scholar 

  • Smith, P., and K.R. Maples. EPR study of the oxidation of Phenylhydrazine initiated by the titanous chloride/hydrogen peroxide reaction and by oxyhemoglobin. J. Magn. Reson. 65: 491–496 (1985).

    CAS  Google Scholar 

  • Sridhar, R., 1981, ‘Accelerated oxygen consumption by catecholamines in the presence of aromatic nitro and nitroso compounds. Implications for neurotoxicity of nitro compounds’, in: Oxygen and Oxy-radicals in Chemistry and Biology (M.A.J. Rodgers and E.L. Powers, eds.), Academic Press, New York, pp. 363–365.

    Google Scholar 

  • Stier, A., and E. Sackmann. Spin labels as enzyme substrates. Heterogeneous lipid distribution in liver microsomal membranes. Biochim. Biophys. Acta 311: 400–408 (1973).

    Article  CAS  Google Scholar 

  • Tomasi, A., E. Albano, F. Biasi, T.F. Slater, V. Vannini, and M.U. Dianzani. Activation of chloroform and related trihalomethanes to free radical intermediates in isolated hepatocytes and in the rat in. vivo as detected by the ESR-spin trapping technique. Chem.-Biol. Interactions 55: 303–316 (1985).

    Article  CAS  Google Scholar 

  • Wolf, C.R., W.G. Harrelson, Jr., W.M. Nastainczyk, R.M. Philpot, B. Kalyanaraman, and R.P. Mason. Metabolism of carbon tetrachloride in hepatic microsomes and reconstituted monooxygenase systems and its relationship to lipid peroxidation. Mol. Pharmacol. 18: 553–558 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Maples, K.R., Knecht, K.T., Mason, R.P. (1989). In Vivo Detection of Free Radical Metabolites. In: Minisci, F. (eds) Free Radicals in Synthesis and Biology. NATO ASI Series, vol 260. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0897-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0897-0_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6892-5

  • Online ISBN: 978-94-009-0897-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics