Skip to main content

Detection of Free Radicals in Biochemistry by Electron Spin Resonance Spectroscopy

  • Chapter
Free Radicals in Synthesis and Biology

Part of the book series: NATO ASI Series ((ASIC,volume 260))

Abstract

Free radical studies in biochemistry are mainly concerned with the detection and characterization of the radical species, rather than with the determination of the molecular details of the radical reaction. Two examples of electron spin resonance spectroscopy studies are described: the production of radicals from the favism-causing pyrimidine glucoside vicine, and the detection of radicals from anthracycline antitumor drugs in human blood. The results demonstrate the importance of working under conditions as close as possible to the ones found in intact biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mager J, Glaser G, Razin A, Izak G, Bien S and Noam J (1965) Biochem. Biophys. Res. Commun. 20, 235–240.

    Article  CAS  Google Scholar 

  2. Mager J, Chevion M and Glaser G (1980) in Toxic Constituents of Plant Foodstuff (Liener LI, ed.) 2nd edn., pp 265–294, Academic Press, New York.

    Google Scholar 

  3. Chevion M, Navok T, Glaser G and Mager J (1982) Eur. J. Biochem. 127, 405–409.

    Article  CAS  Google Scholar 

  4. Winterbourn CC, Benatti U and De Flora A (1986) Biochem. Pharmacol. 35, 2009–2015.

    Article  CAS  Google Scholar 

  5. Musci G, Mavelli I and Rotilio G (1987) Biochim. Biophys. Acta 926, 369–372.

    CAS  Google Scholar 

  6. De Flora A, Benatti U, Guida L, Forteleoni G and Meloni T (1984) Blood 64, 294–297.

    Google Scholar 

  7. Benatti U, Guida L, Grasso M, Tonetti M, De Flora A and Winterbourn CC (1985) Arch. Biochem. Biophys. 242, 549–556.

    Article  CAS  Google Scholar 

  8. Mavelli I, Ciriolo MR, Rossi L, Meloni T, Forteleoni G, De Flora A, Benatti U, Morelli A and Rotilio G (1984) Eur. J. Biochem. 139, 13–18.

    Article  CAS  Google Scholar 

  9. Mavelli I, Ciriolo MR and Rotilio G (1985) Biochim. Biophys. Acta 847, 280–284.

    Article  CAS  Google Scholar 

  10. De Flora A, Benatti U, Morelli A and Guida L (1983) Biochem. int. 7, 281–290.

    Google Scholar 

  11. Albano E, Tomasi A, Manuzzu L and Arese P (1984) Biochem. Pharmacol. 33, 1701–1704.

    Article  CAS  Google Scholar 

  12. Pedersen JZ, Musci G and Rotilio G (1988) submitted to Biochemistry.

    Google Scholar 

  13. Musci G, Pedersen J and Rotilio G (1988) in Proceedings on Medical, Biochemical and Chemical Aspects of Free Radicals (Yoshikawa T, ed.) Elsevier, Amsterdam, in press.

    Google Scholar 

  14. Misra HP and Fridovich I (1972) J. Biol. Chem. 217, 3170–3178.

    Google Scholar 

  15. Gianni L, Corden BJ and Myers CE (1983) in Reviews in Biochemical Toxicology (Hodgson E, Bend J and Philpot R, eds.) pp 1–82, Elsevier/North Holland, New York.

    Google Scholar 

  16. Kalyanaraman B, Perez-Reyes E and Mason RP (1980) Biochim. Biophys. Acta 630, 119–130.

    CAS  Google Scholar 

  17. Lown JW and Chen H-H, (1981) Can. J. Chem. 59, 390–395.

    Article  CAS  Google Scholar 

  18. Gutierrez PL, Gee MV and Bachur NR (1983) Arch. Biochem. Biophys. 223, 68–75.

    Article  CAS  Google Scholar 

  19. Bannister JV and Thornally PJ (1983) FEBS Lett. 157, 170–172.

    Article  CAS  Google Scholar 

  20. Doroshow JH and Davies KJA (1986) J. Biol. Chem. 261, 3068–3074.

    CAS  Google Scholar 

  21. Sinha BK, Katki AG, Batist G, Cowan KH and Myers CE (1987) Biochemistry, 26, 3776–3781.

    Article  CAS  Google Scholar 

  22. Sato S, Iwaizumi M, Handa K and Tamura Y (1977) Gann 68, 603–608.

    CAS  Google Scholar 

  23. Bozzi A, Mavelli I, Mondovi B, Strom R and Rotilio G (1981) Biochem. J. 194, 369–372.

    CAS  Google Scholar 

  24. Peskin AV, Konstatinov AA, Zbarsky IB, Ledeney AN and Ruuge EK (1987) Free Rad. Res. Commun. 3, 47–55.

    Article  CAS  Google Scholar 

  25. Bachur NR, Gordon SL and Gee MV (1977) Mol. Pharmacol. 13, 901–910.

    CAS  Google Scholar 

  26. Bachur NR, Gordon SL and Gee MV (1978) Cancer Res. 38, 1745–1750.

    CAS  Google Scholar 

  27. Bachur NR, Gordon SL, Gee MV and Kon H (1979) Proc. Natl. Acad. Sci. USA 76, 954–957.

    Article  CAS  Google Scholar 

  28. Berlin V and Haseltine WA (1981) J. Biol. Chem. 256, 4747–4756.

    CAS  Google Scholar 

  29. Nohl H and Jordan W (1983) Biochem. Biophys. Res. Commun. 114, 197–205.

    Article  CAS  Google Scholar 

  30. Davies KJA, Doroshow JH and Hochstein P (1983) FEBS Lett. 153, 227–230.

    Article  CAS  Google Scholar 

  31. Davies KJA and Doroshow JH (1986) J. Biol. Chem. 261, 3060–3067.

    CAS  Google Scholar 

  32. Chaires JB, Dattagupta N and Crothers DM (1982) Biochemistry 21, 3927–3932.

    Article  CAS  Google Scholar 

  33. De Flora A, Benatti U, Guida L and Zocchi (1986) Proc. Natl. Acad. Sci. USA 83, 7029–7033.

    Article  Google Scholar 

  34. Schreiber J, Mottley C, Sinha BK, Kalyanaraman B and Mason RP (1987) J. Am. Chem. Soc. 109, 348–351.

    Article  CAS  Google Scholar 

  35. Peskin AV and Bartosz G (1987) FEBS Lett. 219, 212–214.

    Article  CAS  Google Scholar 

  36. Zweier JL (1985) Biochim. Biophys. Acta 8397, 209–213.

    Google Scholar 

  37. Zweier JL, Gianni L, Muindi J and Myers CE (1986) Biochim. Biophys. Acta 884, 326–336.

    CAS  Google Scholar 

  38. O1son RD, Boerth RC, Gerber JG and Nies AS (1981) Life Sci. 29, 1393–1401.

    Article  CAS  Google Scholar 

  39. Inaba M, Kobayashi H, Sakurai Y and Johnson RK (1979) Cancer Res. 39, 2200–2203.

    CAS  Google Scholar 

  40. Scarpa M, Viglino P, Contri D and Rigo A (1984) J. Biol. Chem. 259, 10657–10659.

    CAS  Google Scholar 

  41. Crane FL, Sun IL, Clark MG, Grebing C and Löw H (1985) Biochim. Biophys. Acta 811, 233–264.

    CAS  Google Scholar 

  42. Tritton TR and Yee G (1982) Science 217, 248–250.

    Article  CAS  Google Scholar 

  43. Bredehorst R, Panneerselvam M and Vogl C-W (1987) J. Biol. Chem. 262, 2034–2041.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pedersen, J.Z., Musci, G., Rotilio, G. (1989). Detection of Free Radicals in Biochemistry by Electron Spin Resonance Spectroscopy. In: Minisci, F. (eds) Free Radicals in Synthesis and Biology. NATO ASI Series, vol 260. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0897-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0897-0_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6892-5

  • Online ISBN: 978-94-009-0897-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics