Skip to main content

Crust Mantle Recycling: Inputs and Outputs

  • Chapter
Crust/Mantle Recycling at Convergence Zones

Part of the book series: NATO ASI Series ((ASIC,volume 258))

Abstract

Geochemical and isotopic compositions of continental derived materials that are available as inputs into modern subduction zones are assessed. Oceanic sediments from fore-arc, back-arc and continental margins have a wide range of isotopic and chemical compositions reflecting a variety of source terrains. Intra-oceanic forearc sediments have compositons similar to adjacent arc volcanics while sediments deposited in the passive margin of continental shelves have Proterozoic and in some cases Archean provenances. This indicates that a wide spectrum of materials are available for incorporation into modern and also presumeably ancient subduction zones. Studies of blue-schist and associated eclogite terrains indicate sediment subduction to depths of ~20km to 60 km, but direct constraints on the quantity of continental derived sediments subducted into the deep mantle remains elusive.

An attempt is also made to identify the outputs of crust mantle recycling, that is magmas derived from mantle sources containing components of ancient recycled sediments. A select class of ultra-potassic magmas, the olivine and leucite bearing lamproites, appear to have the appropriate geochemical signatures but their source regions may be located in the lower subcontinental lithosphere rather than the upper mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong R.L. 1968. A model for the evolution of strontium and lead isotopes in a dynamic earth. Rev. Geophys. 6, 175–199.

    Article  Google Scholar 

  • Davidson J.P. 1985. Mechanisms of contamination in Lesser Antilles island arc magmas from radiogenic and oxygen isotope relationships. Earth Planet Sci. Lett. 72, 163–174.

    Article  Google Scholar 

  • Davidson J.P. 1986. Isotopic and geochemical constraints on the pedogenesis of subduction-related lavas from Martinique, Lesser Antilles. J. Geophys. Res. 91, 5943–5962.

    Article  Google Scholar 

  • DePaolo D. 1980. Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochim. Cosmochim. Acta. 44, 1185–1196.

    Article  Google Scholar 

  • Fraser K.J., HAWKESWORTH C.J., ERLANK A.J., MITCHELL R.H. & Scott-Smith B.H. 1985. Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet. Sci. Lett. 76, 57–70.

    Article  Google Scholar 

  • Gill J.B. 1981. Orogenic Andesites and Plate Tectonics. Springer-Verlag, Berlin.

    Google Scholar 

  • Goldstein S.L. & O’Nions R.K. 1981. Nd and Sr isotopic relationships in pelagic clays and ferromanganese deposits. Nature 292, 324–327.

    Article  Google Scholar 

  • Gregory R.T. & Taylor H.P. Jr. 1981. An oxygen isotope profile in a section of cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for ∂18O buffering of the oceans by deep (>5km) seawater-hydrothermal circulation at mid-ocean ridges. J. Geophys. Res. 86, 2737–2755.

    Article  Google Scholar 

  • Hawkesworth C.J., O’Nions R.K. & Arculus R.J. 1979. Nd and Sr isotope geochemistry of island arc volcanics, Grenada, Lesser Antilles. Earth Planet Sci. Lett. 45, 237–248.

    Article  Google Scholar 

  • Houseman G.A., McKenzie D.P. & Molnar P. 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res. 86, 6115–6132.

    Article  Google Scholar 

  • Jaques A.L., Lewis J.D., Smith C.B., Gregory G.P., Ferguson J., Chappell B.W. & McCulloch M.T. 1984. The diamond-bearing ultrapotassic (lamproitic) rocks of the West Kimberley region, Western Australia. In Kornprobst J. ed. Kimberlites II: The mantle and crust-mantle relationships. pp 225–254. Elsevier, Amsterdam.

    Google Scholar 

  • Karig D.E. & Kay R.W. 1981. Fate of sediments on the descending plate at convergent margins. Philos. Trans. R. Soc. London. A. 301, 223–251.

    Google Scholar 

  • Kay R.W. 1980. Volcanic arc magmas: Implications of a melting-mixing model for element recycling in the crust-upper mantle system. Journ. Geol. 88, 497–522.

    Article  Google Scholar 

  • McCulloch M.T. and Wasserburg G.J. 1978. Sm-Nd and Rb-Sr chronology of continental crust formation. Science 200,1003–1011.

    Article  Google Scholar 

  • McCulloch M.T. & Perfit M.R. 1981. 143Nd/144Nd, 87Sr/86Sr and trace-element constraints on the pedogenesis of Aleutian island arc magmas. Earth Planet. Sci. Lett. 56, 167–179.

    Article  Google Scholar 

  • McCulloch M.T., Jaques A.L., Nelson D.R. & Lewis J.D. 1983. Nd and Sr isotopes in kimberlites and lamproites from Western Australia: an enriched mantle origin. Nature 302, 400–403.

    Article  Google Scholar 

  • McCulloch M.T., Compston W., Chivas A., & Abbot M.,1984. Neodymium, strontium, lead and oxygen isotopic and trace element constraints on magma genesis, on the Banda island-arc, Wetar, 27th I.G.C. (Moscow), 11, 344.

    Google Scholar 

  • McDonough W.F. & McCulloch M.T. 1987. Isotopic heterogeneity in the southeast Australian subcontinental lithospheric mantle. Earth Planet. Sci. Lett, (in press).

    Google Scholar 

  • McKenzie D. & O’Nions R.K. 1983. Mantle reservoirs and ocean island basalts. Nature 301, 229–231.

    Article  Google Scholar 

  • McLennan S.M., McCulloch M.T. & Taylor S.R. 1985. Trace element geochemistry of modern deep sea turbidite sands. EOS 66, 1136.

    Google Scholar 

  • McLennan S.M. 1987. Recycling of continental crust. Pure and Applied Geophysics (in press).

    Google Scholar 

  • Morris J.D. & Hart S.R. 1983. Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure. Geochim. Cosmochim. Acta. 47, 2015–2030.

    Article  Google Scholar 

  • Muehlenbachs K. & Clayton R.N. 1976. Oxygen isotope composition of the oceanic crust and its bearing on seawater. J. Geophys. Res. 81,4365–4369.

    Article  Google Scholar 

  • Nakamura, E., Campbell, I.H., & Sun, S.-S. 1985. The influence of subduction processes on the geochemistry of Japanese alkaline basalts. Nature 316, 55–58.

    Article  Google Scholar 

  • Nelson D.R., McCulloch M.T. & Sun S.-S. 1986. The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochim. Cosmochim. Acta. 50, 231–245.

    Article  Google Scholar 

  • Nelson D.R. & McCulloch M.T. 1987. Enriched mantle components and mantle recycling of sediments. Proceed. 4th Int. Kim. Conf. (in press)

    Google Scholar 

  • Perfit M. & McCulloch M.T., 1982. Trace element, Nd-Sr isotope geochemistry of eclogites and blueschists from the Hispaniola-Peurto Rico Subduction Zone. Transactions American Geophys. Union 63, 1133.

    Google Scholar 

  • Perfit M., McCulloch M.T. & Johnson R. 1983. Isotopic and trace element differences in late Cainozoic volcanic rocks from West Melanesia. Geol. Soc. Aust. 6th Geol. Conv. 9, 144

    Google Scholar 

  • Perfit M. & Kay R.W. 1986. Comment on “Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure” by J.D. Morris and S. R. Hart Geochim. Cosmochim. Acta. 50, 477–482.

    Article  Google Scholar 

  • Ringwood A.E. 1982. Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics, basalt pedogenesis, and crustal evolution. J. Geol. 90, 611–643.

    Article  Google Scholar 

  • Sherton J.W. & England R.N. 1980. Highly potassic mafic dykes from Antarctica. J. Geol. Soc. Aust. 30, 295–304.

    Google Scholar 

  • Stosch H.-G. & Lugmair G.W. 1986. Trace element and Sr and Nd isotope geochemistry of peridotite xenoiths from the Eifel (West Germany) and their bearing on the evolution of the subcontinental lithosphere. Earth Planet Sci. Lett. 80, 281–298.

    Article  Google Scholar 

  • Taylor S.R. & McLennan S.M. 1985. The Continental Crust: Its composition and evolution. Blackwell, Oxford, U.K.

    Google Scholar 

  • Tera F., Brown L., Morris J., Sacks I.S., Klein J. & Middleton R. 1986. Sediment incorporation in island arc magmas: Inferences from Geochim. Cosmochim. Acta. 50, 535–550.

    Google Scholar 

  • Valloni R. & Maynard J.B. 1981. Detrital modes of recent deep-sea sands and their relation to tectonic setting: a first approximation. Sedimentology 28, 75.

    Article  Google Scholar 

  • Vollmer R., Ogden P., Schilling J.-G., Kingsley R.H. & Waggoner D.G. 1984. Nd and Sr isotopes in ultrapotassic volcanic rocks from the Leucite Hills, Wyoming. Contrib. Mineral. Petrol. 87,359–368.

    Article  Google Scholar 

  • White W.M. & Hofmann A.W. 1982. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296, 821–825.

    Article  Google Scholar 

  • White W.M., Dupre B. & Vidal P. 1985. Isotope and trace-element chemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean. Geochim. Cosmochim. Acta. 49, 1875–1886.

    Article  Google Scholar 

  • White W.M. & Dupre B. 1986. Sediment subduction and magma genesis in the Lesser Antilles: Isotopic and trace element constraints. J. Geophys. Res. 91, 5297–5941.

    Google Scholar 

  • Wortel M.J.R. & Cloetingh S.A.P. 1985. Accretion and lateral variations in tectonic structure along the Peru-Chile Trench. Tectonophysics 112, 443–462.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

McCulloch, M.T. (1989). Crust Mantle Recycling: Inputs and Outputs. In: Hart, S.R., Gülen, L. (eds) Crust/Mantle Recycling at Convergence Zones. NATO ASI Series, vol 258. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0895-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0895-6_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6891-8

  • Online ISBN: 978-94-009-0895-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics