Skip to main content

Location of diazotrophs in the root interior with special attention to the kallar grass association

  • Chapter
Book cover Nitrogen Fixation with Non-Legumes

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 35))

Abstract

There is increasing evidence that nitrogen-fixing bacteria are able to colonize the interior of grass roots. Several techniques have been used to demonstrate the sites of colonization and are discussed. Among the techniques useful for specific labelling, gold-labelled reagents have been frequently successfully applied in other fields. We propose the use of the protein A-gold technique coupled with silver amplification and light microscopy to render diazotrophs visible in semi-thin sections of roots, and we have applied this technique to gnotobiotically grown kallar grass. LR white resin soft grade was a suitable resin for embedding. Diazotrophic rods predominating in the endorhizosphere of naturally growing kallar grass had the potential to colonize the aerenchyma of gnotobiotically-grown plants. Penetration by the bacteria probably occurred at epidermal cell junctions and at points of emergence of lateral roots, as also proposed for Azospirillum. Larger cell aggregates described by us for naturally occurring kallar grass plants were not detected in the gnotobiotic system. Physiological consequences of colonization of the aerenchyma are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson J R and Westmoreland D 1971 Direct counts of soil organisms using a fluorescent brightner and a europium chelate. Soil Biol. Biochem. 3, 85–87.

    Article  Google Scholar 

  • Armstrong W 1979 Aeration in higher plants. In Advances in Botanical Research, vol. 7. Ed. H W Woolhouse. pp. 226–332. Academic Press, Inc. (London), Ltd., London.

    Google Scholar 

  • Armstrong W and Gaynard T J 1976 The critical oxygen pressures for respiration in intact plants. Physiol. Plant. 37, 200–206.

    Article  CAS  Google Scholar 

  • Baldani V L D, de B Alvarez M A, Baldani J I and Döbereiner J 1986a Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant and Soil 90, 35–46.

    Article  Google Scholar 

  • Baldani J I, Baldani V L D, Seldin L and Döbereiner J 1986b Characterization of Herbaspirillum seropedicae gen. nov. sp. nov., a root-associated nitrogen-fixing bacterium. Int. J. Syst. Bacteriol. 36, 86–93.

    Article  CAS  Google Scholar 

  • Barraquio W L, Ladha J K and Watanabe I 1983 Isolation and identification of N2-fixing Pseudomonas associated with wetland rice. Can. J. Microbiol. 29, 867–873.

    Article  PubMed  CAS  Google Scholar 

  • Bergersen F J 1984 Oxygen and the physiology of diazotrophic microorganisms. In Advances in Nitrogen Fixation Research. Eds. C Veeger and W E Newton, pp. 171–180. Martinus Nijhoff, Dr. W. Junk Publishers, The Hague.

    Google Scholar 

  • Bohlool B B and Schmidt E L 1968 Nonspecific staining: Its control in immunofluorescence examination of soil. Science 162, 1012–1014.

    Article  PubMed  CAS  Google Scholar 

  • Bohlool B B and Schmidt E L 1980 The immunofluorescence approach in microbial ecology. In Advances in Microbial Ecology. Ed. M Alexander, pp. 203–241. Plenum Publishing Co., New York.

    Google Scholar 

  • Carlemalm E, Garavito M and Villiger W 1982 Resin development for electron microscopy and an analysis of embedding at low temperature. J. Microsc. 126, 123–143.

    Article  CAS  Google Scholar 

  • Coons A H, Creech H J, Jones R N and Berliner E 1942 The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45, 159–170.

    CAS  Google Scholar 

  • Craig S and Miller C 1984 LR White resin and improved on-grid immunogold detection of vicilin, storage protein. Cell Biol. International Reports 8, 879–886.

    Article  CAS  Google Scholar 

  • Crawford M M 1982 Physiological responses to flooding. In Encyclopedia of Plant Physiology, vol. 12B. Eds. O L Lange, P S Nobel, C B Osmond and H Ziegler. pp. 453–477. Springer Verlag, Berlin.

    Google Scholar 

  • Danscher G 1981 Localization of gold in biological tissue: A photochemical method for light and electron microscopy. Histochemistry 71, 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Danscher G and Nörgaard J O R 1983 Light microscopic visualization of colloidal gold on resin-embedded tissue. J. Histochem. Cytochem. 31, 1394–1398.

    Article  PubMed  CAS  Google Scholar 

  • Diem H G, Schmidt E L and Dommergues Y R 1978 The use of the fluorescent-antibody technique to study the behaviour of Beijerinckia isolate in the rhizosphere and spermosphere of rice. Ecol. Bull. (Stockholm) 26, 312–318.

    Google Scholar 

  • Döbereiner J 1961 Nitrogen-fixing bacteria of the genus Beijerinckia Derx in the rhizosphere of sugar cane. Plant and Soil 15, 211–216.

    Article  Google Scholar 

  • Endresen C 1979 The binding to protein A of immunoglobulin G and of Fab and Fc fragments. Acta Pathol. Microbiol. Scand. Sect. C87, 185–190.

    Google Scholar 

  • Faulk W P and Taylor G M 1971 An immunocolloid method for the electron microscope. Immunochemistry 8, 1081–1083.

    Article  PubMed  CAS  Google Scholar 

  • Forsgren A and Sjöquist J 1966 “Protein A” from S. aureus. I. Pseudoimmune reaction with human γ-globulin. J. Immunol. 97, 822–827.

    PubMed  CAS  Google Scholar 

  • Forsgren A and Sjoquist J 1967 “Protein A” from S. aereus. III. Reaction with rabbit y-globulin. J. Immunol. 99, 19–24.

    PubMed  CAS  Google Scholar 

  • Geoghegan W D, Scillian J J and Ackerman G A 1978 The detection of human B-lymphocytes by both light and electron microscopy utilizing colloidal gold labeled anti-immunoglobulin. Immunol. Commun. 7, 1–12.

    PubMed  CAS  Google Scholar 

  • Goudswaard J, van der Donk J A, Noordzi J A, van Dam R H and Vaerman J P 1978 Protein A reactivity of various mammalian immunoglobulins. Scand. J. Immunol. 8, 21–28.

    Article  PubMed  CAS  Google Scholar 

  • Haahtela K, Helander I, Nurmiaho-Lassila E-L and Sundman V 1983 Morphological and physiological characteristics and lipopolysaccharide composition of N2-fixing (C2H2-reducing) root-associated Pseudomonas sp. Can. J. Microbiol. 29, 874–880.

    Article  PubMed  CAS  Google Scholar 

  • Haahtela K, Wartioraara T, Sundmann V and Skujins J 1981 Root-associated N2 fixation (acetylene reduction) by Enterobacteriaceae and Azospirillum strains in cold-climate spodosols. Appl. Environ. Microbiol. 41, 203–206.

    PubMed  CAS  Google Scholar 

  • Horisberger M and Vonlanthen M 1977 Location of mannan and chitin on thin sections of budding yeasts with gold markers. Arch. Microbiol. 115, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Hurek T, Reinhold B, Fendrik I and Niemann E-G 1987 Rootzone-specific oxygen tolerance of Azospirillum spp. and diazotrophic rods closely associated with Kallar grass. Appl. Environ. Microbiol. 53, 163–169.

    PubMed  CAS  Google Scholar 

  • Korhonen T K, Nurmiaho-Lassila E-L, Laakso T and Haahtela K 1986 Adhesion of fimbriated nitrogen-fixing enteric bacteria to roots of grasses and cereals. Plant and Soil 90, 59–69.

    Article  Google Scholar 

  • Lakshmi V, Rao A S, Vijayalakshmi K, Lakshmi-Kumari M, Tilak K V B R and Subba Rao N S 1977 Establishment and survival of Spirillum lipoferum. Proc. Indian Acad. Sci. Sect. B 86, 397–404.

    Google Scholar 

  • Ladha J K, Barraquio W L and Watanabe I 1983 Isolation and identification of nitrogen-fixing Enterobacter cloacae and Klebsiella planticola associated with rice plants. Can. J. Microbiol. 29, 1301–1308.

    Article  Google Scholar 

  • Lucocq J M and Roth J 1985 Colloidal gold and colloidal silver-metallic markers for light microscopic histochemistry. In Techniques in Immunocytochemistry, Vol. 3. Eds. G R Bullock and P Petrusz. pp. 203–236. Academic Press, London.

    Google Scholar 

  • Mace M L, Van N T and Conn P M 1977 Electron microscopic localization of DNA-dependent RNA polymerase binding sites on DNA using enzyme immobilized on colloidal gold. Cell Biol. Intern. Rep. 1, 527–538.

    Article  CAS  Google Scholar 

  • Magalhaes L M S, Patriquin D and Döbereiner J 1979 Infection of field-grown maize with Azospirillum spp. Rev. Bras. Biol. 39, 587–596.

    Google Scholar 

  • Malik K A and Zafar Y 1985 Quantification of root associated nitrogen fixation in Kallar grass as estimated by 15N isotope dilution. In Nitrogen and the Environment. Eds. K Malik, S H M Naqvi and M I H Aleem. pp. 161–171. Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan.

    Google Scholar 

  • McClung C R, Van Berkum P, Davis R E and Sloger C 1983a Enumeration and localization of N2-fixing bacteria associated with roots of Spartina alterniflora Loisel. Appl. Environ. Microbiol. 45, 1914–1920.

    PubMed  CAS  Google Scholar 

  • McClung C R and Patriquin D G 1980 Isolation of a nitrogenfixing Campylobacter species from the roots of Spartina alterniflora Loisel. Can. J. Microbiol. 26, 881–886.

    Article  PubMed  CAS  Google Scholar 

  • McClung C R, Patriquin D G and Davis R E 1983b Campylobacter nitrofigilis sp. nov., a nitrogen-fixing bacterium associated with roots of Spartina alterniflora Loisel. Int. J. Syst. Bacteriol. 33, 605–612.

    Article  Google Scholar 

  • McCully M E and Canny M J 1985 Localisation of translocated 14C in roots and root exudates of field-grown maize. Physiol. Plant 65, 380–392.

    Article  CAS  Google Scholar 

  • Nguyen T, Zlechowsla M, Foster V, Bergamn H and Verma D PS 1985 Primary structure of the soybean nodulin-35 gene encoding uricase II localized in the peroxysomes of uninfected cells of nodules. Proc. Natl. Ac. Sci. USA 82, 5040–5044.

    Article  CAS  Google Scholar 

  • O’Hara G W, Davey M R and Lucas J A 1983 Association between the nitrogen fixing bacterium Azospirillum brasilense and exised plant roots. Z. Pflanzenphysiol. 113, 1–13.

    Google Scholar 

  • Oren A 1987 On the use of tetrazolium salts for the measurement of microbial activity in sediments. FEMS Microbiol. Ecol. 45, 127–133.

    Article  CAS  Google Scholar 

  • Patriquin D G and Döbereiner J 1978 Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can. J. Microbiol. 28, 734–742.

    Article  Google Scholar 

  • Patriquin D G, Gracioli L A and Ruschel A P 1980 Nitrogenase activity of sugar cane propagated from stem cuttings in sterile vermiculite. Soil Biol. Biochem. 12, 413–417.

    Article  CAS  Google Scholar 

  • Plazinski J and Rolfe B C 1985 Analysis of the pectolytic activity of Rhizobium and Azospirillum strains isolated from Trifolium repens. J. Plant Physiol. 120, 181–187.

    CAS  Google Scholar 

  • Reinhold B, Hurek T and Fendrik I 1985 Strain-specific chemotaxis of Azospirillum spp. J. Bacteriol. 162, 190–195.

    PubMed  CAS  Google Scholar 

  • Reinhold B, Hurek T and Fendrik I 1987a Cross reaction of predominant nitrogen-fixing bacteria with enveloped, round bodies in the root interior of Kallar grass. Appl. Environ. Microbiol. 53, 889–891.

    PubMed  CAS  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S and De Ley 1987b Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int. J. Syst. Bacteriol. 37, 43–51.

    Article  Google Scholar 

  • Reinhold B, Hurek T, Niemann E-G and Fendrik I 1986 Close association of Azospirillum and diazotrophic rods with dif- ferent root zones of Kallar grass. Appl. Environ. Microbiol. 52, 520–526.

    PubMed  CAS  Google Scholar 

  • Robertson J G, Wells B, Bisseling T, Farnden K J F and Johnston A W B 1984 Immuno-gold localization of leghaemoglobin in cytoplasm in nitrogen-fixing root nodules of pea. Nature 311, 254–256.

    Article  CAS  Google Scholar 

  • Romano E L and Romano M 1977 Staphylococcal protein A bound to colloidal gold: A useful reagent to label antigen-antibody sites in electron microscopy. Immunochemistry 14, 711–715.

    Article  CAS  Google Scholar 

  • Roth J 1982 Applications of immunocolloids in light microscopy: Preparation of protein A-silver and protein A-gold complexes and their application for localization of single and multiple antigens in paraffin sections. J. Histochem. Cytochem. 30, 691–696.

    Article  PubMed  CAS  Google Scholar 

  • Roth J 1986 Post-embedding cytochemistry with gold-labelled reagents: A review. J. Microsc. 143, 125–137.

    Article  PubMed  CAS  Google Scholar 

  • Roth J, Bendayan M, Carlemalm E, Villiger W and Garavito M 1981 Enhancement of structural preservation and immunocytochemical staining in low temperature-embedded pancreatic tissue. J. Histochem. Cytochem. 29, 663–671.

    Article  PubMed  CAS  Google Scholar 

  • Roth J, Bendayan M and Orci L 1978 Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J. Histochem. Cytochem. 26, 1074–1081.

    Article  PubMed  CAS  Google Scholar 

  • Sandhu G R and Malik K A 1975 Plant succession—a key to the utilization of saline soils. Nucleus 12, 35–38.

    CAS  Google Scholar 

  • Schank S C, Smith R L, Weiser G C, Zuberer D A, Bouton J H, Quesenberry K H, Tyler M E, Milam J R and Littell R C 1979 Fluorescent antibody technique to identify Azospirillum brasilense associated with roots of grasses. Soil Biol. Biochem. 11,287–295.

    Article  Google Scholar 

  • Seldin L, Elsas J D and van Penido E G C 1984 Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. Int. J. Syst. Bacteriol. 34, 451–456.

    Article  CAS  Google Scholar 

  • Singer S J 1959 Preparation of an electron-dense antibody conjugate. Nature 183, 1523–1524.

    Article  PubMed  CAS  Google Scholar 

  • Taatjes D J, Schaub U and Roth J 1987 Light microscopical detection of antigens and lectin binding sites with gold-labelled reagents on semithin Lowicryl K4M sections: Usefulness of the photochemical silver reaction for signal amplification. Histochem. J. 19, 235–245.

    Article  PubMed  CAS  Google Scholar 

  • Tien T M, Diem H G, Gaskins M H and Hubbell D H 1981 Polygalacturonic acid transeliminase production by Azospirillum species. Can. J. Microbiol. 27, 426–431.

    Article  PubMed  CAS  Google Scholar 

  • Titus D E and Becker W M 1985 Investigation of the glyoxysome-peroxysome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. J. Cell Biol. 101, 1288–1299.

    Article  PubMed  CAS  Google Scholar 

  • Umali-Garcia M, Hubbell D H and Gaskins M H 1978 Process of infection of Panicum maximum by Spirillum lipoferum. Ecol. Bull. (Stockholm) 26, 373–379.

    Google Scholar 

  • Umali-Garcia M, Hubbell D H, Gaskins M H and Dazzo F B 1980 Association of Azospirillum with grass roots. Appl. Environ. Microbiol. 39, 219–226.

    PubMed  CAS  Google Scholar 

  • Vanden Bosch K A 1986 Light and electron microscopic visualization of uricase by immunogold labelling of sections of resin-embedded soybean nodules. J. Microsc. 143, 187–196.

    Google Scholar 

  • Watanabe I and Barraquio W L 1979 Low levels of fixed nitrogen required for isolation of free-living N2-fixing organisms from rice roots. Nature (London) 277, 565–566.

    Article  CAS  Google Scholar 

  • Zafar Y, Ashraf M and Malik K A 1986 Nitrogen-fixation associated with roots of Kallar grass (Leptochloa fusca L. Kunth). Plant and Soil 90, 93–105.

    Article  Google Scholar 

  • Zimmermann R, Iturriaga R and Becker-Birck J 1978 Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. Environ. Microbiol. 36, 926–935.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Reinhold, B., Hurek, T. (1989). Location of diazotrophs in the root interior with special attention to the kallar grass association. In: Skinner, F.A., Boddey, R.M., Fendrik, I. (eds) Nitrogen Fixation with Non-Legumes. Developments in Plant and Soil Sciences, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0889-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0889-5_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6888-8

  • Online ISBN: 978-94-009-0889-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics